• Neuroscience · Sep 1997

    Cell-cell coupling between CO2-excited neurons in the dorsal medulla oblongata.

    • R Q Huang, J S Erlichman, and J B Dean.
    • Department of Physiology and Biophysics, Wright State University, School of Medicine, Dayton, OH 45435, USA.
    • Neuroscience. 1997 Sep 1;80(1):41-57.

    AbstractAnatomically coupled neurons (17 of 137) and non-coupled neurons (120 of 137), in and near the nucleus tractus solitarius and dorsal motor nucleus (i.e. solitary complex), were studied by rapid perforated patch recording in slices (rat, 150-350 microm thick, postnatal day 0-21) before, during and after exposure to hypercapnic acidosis. Anatomical coupling refers to the intercellular transfer of Lucifer Yellow and Biocytin into adjoining neurons, presumably via gap junctions [see Dean et al. (1997) Neuroscience 80, 21-40]. Eighty-six per cent of the anatomically coupled neurons (12 of 14) were depolarized by hypercapnic acidosis, a response referred to as CO2 excitation or CO2 chemosensitivity. In all, 28% (12 of 43) of the CO2-excited neurons were anatomically coupled to at least one other neuron. None (0 of 39) of the CO2-inhibited neurons were anatomically coupled, and only 4% (two of 46) of the CO2-insensitive neurons were anatomically coupled. Increasing the fractional concentration of CO2 from five to 10 and 15% in constant bicarbonate (26 mM) decreased intracellular pH (control 7.3 7.4, 22-25 degrees C) by approximately 1.0 and 1.5 pH units, respectively, as measured using the pH-sensitive fluorescent dye, 2',7'-bis (2-carboxyethyl)-5,6-carboxyfluorescein. Nine of the anatomically coupled neurons (six CO2-excited, one CO2-insensitive and two unidentified) exhibited spontaneous electrotonic postsynaptic potential-like activity, suggesting that they were also electrotonically coupled. During hypercapnic acidosis, the amplitudes of electrotonic postsynaptic potentials were unchanged, concomitant with small changes in input resistance. The frequency of electrotonic postsynaptic potentials increased during hypercapnic acidosis in many anatomically coupled neurons (eight of nine), indicating that both neurons of the coupled pair were stimulated. Cell-cell coupling occurred preferentially in and between CO2-excited neurons of the solitary complex. Further, CO2-excited neurons were not electrotonically uncoupled during intracellular acidosis, in contrast to the effect that decreased intracellular pH has on many other types of coupled cells. It was not determined whether anatomical coupling was affected by hypercapnic acidosis since dye mixture was always administered under normocapnic conditions. The high correlation between anatomical coupling, electrotonic coupling activity and CO2-induced depolarization suggests that cell-cell coupling is an important electroanatomical feature in CO2-excited neurons of the solitary complex. CO2-excited neurons have been hypothesized to function in central chemoreception for the cardiorespiratory control systems, suggesting that cell cell coupling may contribute in part to central chemoreception of CO2 and H+.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.