• NeuroImage · Nov 2017

    A systematic study of the sensitivity of partial volume correction methods for the quantification of perfusion from pseudo-continuous arterial spin labeling MRI.

    • Moss Y Zhao, Melvin Mezue, Andrew R Segerdahl, Thomas W Okell, Irene Tracey, Yingyi Xiao, and Michael A Chappell.
    • Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom. Electronic address: yize.zhao@eng.ox.ac.uk.
    • Neuroimage. 2017 Nov 15; 162: 384-397.

    AbstractArterial spin labeling (ASL) MRI is a non-invasive technique for the quantification of cerebral perfusion, and pseudo-continuous arterial spin labeling (PCASL) has been recommended as the standard implementation by a recent consensus of the community. Due to the low spatial resolution of ASL images, perfusion quantification is biased by partial volume effects. Consequently, several partial volume correction (PVEc) methods have been developed to reduce the bias in gray matter (GM) perfusion quantification. The efficacy of these methods relies on both the quality of the ASL data and the accuracy of partial volume estimates. Here we systematically investigate the sensitivity of different PVEc methods to variability in both the ASL data and partial volume estimates using simulated PCASL data and in vivo PCASL data from a reproducibility study. We examined the PVEc methods in two ways: the ability to preserve spatial details and the accuracy of GM perfusion estimation. Judging by the root-mean-square error (RMSE) between simulated and estimated GM CBF, the spatially regularized method was superior in preserving spatial details compared to the linear regression method (RMSE of 1.2 vs 5.1 in simulation of GM CBF with short scale spatial variations). The linear regression method was generally less sensitive than the spatially regularized method to noise in data and errors in the partial volume estimates (RMSE 6.3 vs 23.4 for SNR = 5 simulated data), but this could be attributed to the greater smoothing introduced by the method. Analysis of a healthy cohort dataset indicates that PVEc, using either method, improves the repeatability of perfusion quantification (within-subject coefficient of variation reduced by 5% after PVEc).Copyright © 2017 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.