• Comput Methods Programs Biomed · Oct 2018

    Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection.

    • Hyunjun Eun, Daeyeong Kim, Chanho Jung, and Changick Kim.
    • School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea.
    • Comput Methods Programs Biomed. 2018 Oct 1; 165: 215-224.

    Background And ObjectiveIn pulmonary nodule detection, the first stage, candidate detection, aims to detect suspicious pulmonary nodules. However, detected candidates include many false positives and thus in the following stage, false positive reduction, such false positives are reliably reduced. Note that this task is challenging due to 1) the imbalance between the numbers of nodules and non-nodules and 2) the intra-class diversity of non-nodules. Although techniques using 3D convolutional neural networks (CNNs) have shown promising performance, they suffer from high computational complexity which hinders constructing deep networks. To efficiently address these problems, we propose a novel framework using the ensemble of 2D CNNs using single views, which outperforms existing 3D CNN-based methods.MethodsOur ensemble of 2D CNNs utilizes single-view 2D patches to improve both computational and memory efficiency compared to previous techniques exploiting 3D CNNs. We first categorize non-nodules on the basis of features encoded by an autoencoder. Then, all 2D CNNs are trained by using the same nodule samples, but with different types of non-nodules. By extending the learning capability, this training scheme resolves difficulties of extracting representative features from non-nodules with large appearance variations. Note that, instead of manual categorization requiring the heavy workload of radiologists, we propose to automatically categorize non-nodules based on the autoencoder and k-means clustering.ResultsWe performed extensive experiments to validate the effectiveness of our framework based on the database of the lung nodule analysis 2016 challenge. The superiority of our framework is demonstrated through comparing the performance of five frameworks trained with differently constructed training sets. Our proposed framework achieved state-of-the-art performance (0.922 of the competition performance metric score) with low computational demands (789K of parameters and 1024M of floating point operations per second).ConclusionWe presented a novel false positive reduction framework, the ensemble of single-view 2D CNNs with fully automatic non-nodule categorization, for pulmonary nodule detection. Unlike previous 3D CNN-based frameworks, we utilized 2D CNNs using 2D single views to improve computational efficiency. Also, our training scheme using categorized non-nodules, extends the learning capability of representative features of different non-nodules. Our framework achieved state-of-the-art performance with low computational complexity.Copyright © 2018 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.