• NeuroImage · Sep 2010

    Multi-area neural mass modeling of EEG and MEG signals.

    • Abbas Babajani-Feremi and Hamid Soltanian-Zadeh.
    • Image Analysis Lab., Radiology Department, Henry Ford Hospital, One Ford Place, 2F, Detroit, MI 48202, USA. abbasb@rad.hfh.edu
    • Neuroimage. 2010 Sep 1; 52 (3): 793-811.

    AbstractWe previously proposed an integrated electroencephalography (EEG), magnetoencephalography (MEG), and functional Magnetic Resonance Imaging (fMRI) model based on an extended neural mass model (ENMM) within a single cortical area. In the ENMM, a cortical area contains several minicolumns where strengths of their connections diminish exponentially with their distances. The ENMM was derived based on the physiological principles of the cortical minicolumns and their connections within a single cortical area to generate EEG, MEG, and fMRI signals. The purpose of this paper is to further extend the ENMM model from a single-area to a multi-area model to develop a neural mass model of the entire brain that generates EEG and MEG signals. For multi-area modeling, two connection types are considered: short-range connections (SRCs) and long-range connections (LRCs). The intra-area SRCs among the minicolumns within the areas were previously modeled in the ENMM. To define inter-area LRCs among the cortical areas, we consider that the cell populations of all minicolumns in the destination area are affected by the excitatory afferent of the pyramidal cells of all minicolumns in the source area. The state-space representation of the multi-area model is derived considering the intra-minicolumn, SRCs', and LRCs' parameters. Using simulations, we evaluate effects of parameters of the model on its dynamics and, based on stability analysis, find valid ranges for parameters of the model. In addition, we evaluate reducing redundancy of the model parameters using simulation results and conclude that the parameters of the model can be limited to the LRCs and SRCs while the intra-minicolumn parameters stay at their physiological mean values. The proposed multi-area integrated E/MEG model provides an efficient neuroimaging technique for effective connectivity analysis in healthy subjects as well as neurological and psychiatric patients.Copyright (c) 2010 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…