• NeuroImage · Jun 2015

    Comparative Study

    Voxel-based morphometry at ultra-high fields. a comparison of 7T and 3T MRI data.

    • Rene Seiger, Andreas Hahn, Allan Hummer, Georg S Kranz, Sebastian Ganger, Martin Küblböck, Christoph Kraus, Ronald Sladky, Siegfried Kasper, Christian Windischberger, and Rupert Lanzenberger.
    • Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria.
    • Neuroimage. 2015 Jun 1; 113: 207-16.

    AbstractRecent technological progress enables MRI recordings at ultra-high fields of 7 T and above leading to brain images of higher resolution and increased signal-to-noise ratio. Despite these benefits, imaging at 7 T exhibits distinct challenges due to B1 field inhomogeneities, causing decreased image quality and problems in data analysis. Although several strategies have been proposed, a systematic investigation of bias-corrected 7 T data for voxel-based morphometry (VBM) is still missing and it is an ongoing matter of debate if VBM at 7 T can be carried out properly. Here, an optimized VBM study was conducted, evaluating the impact of field strength (3T vs. 7 T) and pulse sequence (MPRAGE vs. MP2RAGE) on gray matter volume (GMV) estimates. More specifically, twenty-two participants were measured under the conditions 3T MPRAGE, 7 T MPRAGE and 7 T MP2RAGE. Due to the fact that 7 T MPRAGE data exhibited strong intensity inhomogeneities, an alternative preprocessing pipeline was proposed and applied for that data. VBM analysis revealed higher GMV estimates for 7 T predominantly in superior cortical areas, caudate nucleus, cingulate cortex and the hippocampus. On the other hand, 3T yielded higher estimates especially in inferior cortical areas of the brain, cerebellum, thalamus and putamen compared to 7 T. Besides minor exceptions, these results were observed for 7 T MPRAGE as well for the 7 T MP2RAGE measurements. Results gained in the inferior parts of the brain should be taken with caution, as native GM segmentations displayed misclassifications in these regions for both 7 T sequences. This was supported by the test-retest measurements showing highest variability in these inferior regions of the brain for 7 T and also for the advanced MP2RAGE sequence. Hence, our data support the use of 7 T MRI for VBM analysis in cortical areas, but direct comparison between field strengths and sequences requires careful assessment. Similarly, analysis of the inferior cortical regions, cerebellum and subcortical regions still remains challenging at 7 T even if the advanced MP2RAGE sequence is used.Copyright © 2015 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…