• Med Biol Eng Comput · Jan 2019

    A novel fused convolutional neural network for biomedical image classification.

    • Shuchao Pang, Anan Du, Mehmet A Orgun, and Zhezhou Yu.
    • Department of Computational Intelligence, College of Computer Science and Technology, Jilin University, Qianjin Street 2699, Changchun, Jilin Province, China.
    • Med Biol Eng Comput. 2019 Jan 1; 57 (1): 107-121.

    AbstractWith the advent of biomedical imaging technology, the number of captured and stored biomedical images is rapidly increasing day by day in hospitals, imaging laboratories and biomedical institutions. Therefore, more robust biomedical image analysis technology is needed to meet the requirement of the diagnosis and classification of various kinds of diseases using biomedical images. However, the current biomedical image classification methods and general non-biomedical image classifiers cannot extract more compact biomedical image features or capture the tiny differences between similar images with different types of diseases from the same category. In this paper, we propose a novel fused convolutional neural network to develop a more accurate and highly efficient classifier for biomedical images, which combines shallow layer features and deep layer features from the proposed deep neural network architecture. In the analysis, it was observed that the shallow layers provided more detailed local features, which could distinguish different diseases in the same category, while the deep layers could convey more high-level semantic information used to classify the diseases among the various categories. A detailed comparison of our approach with traditional classification algorithms and popular deep classifiers across several public biomedical image datasets showed the superior performance of our proposed method for biomedical image classification. In addition, we also evaluated the performance of our method in modality classification of medical images using the ImageCLEFmed dataset. Graphical abstract The graphical abstract shows the fused, deep convolutional neural network architecture proposed for biomedical image classification. In the architecture, we can clearly see the feature-fusing process going from shallow layers and the deep layers.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.