-
- Rogier A Feis, BoutsMark J R JMJRJDepartment of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.LIBC, Leiden Institute for Brain and Cognition, Leiden, The Netherlands.Institute of Psychology, Leiden University, Leiden, The Netherlands., DopperElise G PEGPDepartment of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands., Nicola Filippini, Verena Heise, Aaron J Trachtenberg, John C van Swieten, Mark A van Buchem, Jeroen van der Grond, Clare E Mackay, and RomboutsSerge A R BSARBDepartment of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.LIBC, Leiden Institute for Brain and Cognition, Leiden, The Netherlands.Institute of Psychology, Leiden University, Leiden, The Netherlands..
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands. r.a.feis@lumc.nl.
- Bmc Neurol. 2019 Dec 27; 19 (1): 343.
BackgroundFrontotemporal dementia (FTD) and Alzheimer's disease (AD) are associated with divergent differences in grey matter volume, white matter diffusion, and functional connectivity. However, it is unknown at what disease stage these differences emerge. Here, we investigate whether divergent differences in grey matter volume, white matter diffusion, and functional connectivity are already apparent between cognitively healthy carriers of pathogenic FTD mutations, and cognitively healthy carriers at increased AD risk.MethodsWe acquired multimodal magnetic resonance imaging (MRI) brain scans in cognitively healthy subjects with (n=39) and without (n=36) microtubule-associated protein Tau (MAPT) or progranulin (GRN) mutations, and with (n=37) and without (n=38) apolipoprotein E ε4 (APOE4) allele. We evaluated grey matter volume using voxel-based morphometry, white matter diffusion using tract-based spatial statistics (TBSS), and region-to-network functional connectivity using dual regression in the default mode network and salience network. We tested for differences between the respective carriers and controls, as well as for divergence of those differences. For the divergence contrast, we additionally performed region-of-interest TBSS analyses in known areas of white matter diffusion differences between FTD and AD (i.e., uncinate fasciculus, forceps minor, and anterior thalamic radiation).ResultsMAPT/GRN carriers did not differ from controls in any modality. APOE4 carriers had lower fractional anisotropy than controls in the callosal splenium and right inferior fronto-occipital fasciculus, but did not show grey matter volume or functional connectivity differences. We found no divergent differences between both carrier-control contrasts in any modality, even in region-of-interest analyses.ConclusionsConcluding, we could not find differences suggestive of divergent pathways of underlying FTD and AD pathology in asymptomatic risk mutation carriers. Future studies should focus on asymptomatic mutation carriers that are closer to symptom onset to capture the first specific signs that may differentiate between FTD and AD.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.