-
- Ya-Jun Ma, Saeed Jerban, Michael Carl, Lidi Wan, Tan Guo, Hyungseok Jang, Graeme M Bydder, Eric Y Chang, and Jiang Du.
- Department of Radiology, University of California, San Diego, CA, USA.
- NMR Biomed. 2019 May 1; 32 (5): e4080.
AbstractThe purpose of this study is to develop a 3D adiabatic inversion recovery prepared ultrashort echo time Cones (3D IR-UTE-Cones) sequence for high resolution and contrast imaging of the region of osteochondral junction (OCJ) of human knee joint using a clinical 3 T scanner. A feasibility study on direct imaging of the OCJ region was performed on a human patellar cartilage sample and on eight cadaveric knee joints using T1 -weighted, proton density (PD)-weighted and short-T2 -weighted 3D IR-UTE-Cones sequences. Contrast to noise ratio was measured to evaluate the effectiveness of the 3D IR-UTE-Cones sequences for selective imaging of the OCJ region. Computed tomography imaging was performed in parallel for the cadaveric knee joints. The optimized T1 -weighted 3D IR-UTE-Cones sequence was used to image the knee joints of eight healthy volunteers and six patients with osteoarthritis (OA) to evaluate morphological changes in the OCJ region. Clinical PD- and T2 -weighted FSE sequences were also performed for comparison. The T1 -weighted 3D IR-UTE-Cones sequence showed high resolution and contrast bright band of the normal OCJ region in the cadaveric joints. Normal OCJ appearances were also seen in healthy volunteers. Abnormal OCJ regions, manifested as ill-defined, focal loss or non-visualization of the high intensity band adjacent to the subchondral bone plate, were observed in the knee joints of both ex vivo and in vivo OA patients. The 3D IR-UTE-Cones sequence can image OCJ regions ex vivo and in vivo, with abnormalities depicted with high resolution and contrast. The technique may be useful for demonstrating involvement of OCJ regions in early OA.© 2019 John Wiley & Sons, Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.