• Magn Reson Med · Mar 2020

    Accelerated free-breathing whole-heart 3D T2 mapping with high isotropic resolution.

    • Aurélien Bustin, Giorgia Milotta, Tevfik F Ismail, Radhouene Neji, René M Botnar, and Claudia Prieto.
    • Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
    • Magn Reson Med. 2020 Mar 1; 83 (3): 988-1002.

    PurposeTo enable free-breathing whole-heart 3D T2 mapping with high isotropic resolution in a clinically feasible and predictable scan time. This 3D motion-corrected undersampled signal matched (MUST) T2 map is achieved by combining an undersampled motion-compensated T2 -prepared Cartesian acquisition with a high-order patch-based reconstruction.MethodsThe 3D MUST-T2 mapping acquisition consists of an electrocardiogram-triggered, T2 -prepared, balanced SSFP sequence with nonselective saturation pulses. Three undersampled T2 -weighted volumes are acquired using a 3D Cartesian variable-density sampling with increasing T2 preparation times. A 2D image-based navigator is used to correct for respiratory motion of the heart and allow 100% scan efficiency. Multicontrast high-dimensionality undersampled patch-based reconstruction is used in concert with dictionary matching to generate 3D T2 maps. The proposed framework was evaluated in simulations, phantom experiments, and in vivo (10 healthy subjects, 2 patients) with 1.5-mm3 isotropic resolution. Three-dimensional MUST-T2 was compared against standard multi-echo spin-echo sequence (phantom) and conventional breath-held single-shot 2D SSFP T2 mapping (in vivo).ResultsThree-dimensional MUST-T2 showed high accuracy in phantom experiments (R2 > 0.99). The precision of T2 values was similar for 3D MUST-T2 and 2D balanced SSFP T2 mapping in vivo (5 ± 1 ms versus 4 ± 2 ms, P = .52). Slightly longer T2 values were observed with 3D MUST-T2 in comparison to 2D balanced SSFP T2 mapping (50.7 ± 2 ms versus 48.2 ± 1 ms, P < .05). Preliminary results in patients demonstrated T2 values in agreement with literature values.ConclusionThe proposed approach enables free-breathing whole-heart 3D T2 mapping with high isotropic resolution in about 8 minutes, achieving accurate and precise T2 quantification of myocardial tissue in a clinically feasible scan time.© 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.