• NeuroImage · Sep 2004

    Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain.

    • Vasily L Yarnykh and Chun Yuan.
    • Department of Radiology, University of Washington, Seattle, WA 98195, USA. yarnykh@u.washington.edu
    • Neuroimage. 2004 Sep 1; 23 (1): 409-24.

    AbstractCross-relaxation imaging is a new quantitative MRI modality, which allows mapping of fundamental parameters determining the magnetization transfer (MT) effect in tissues, cross-relaxation rate constant (k) and bound pool fraction (f). This study introduces a new time-efficient technique for cross-relaxation imaging, which obtains three-dimensional (3D) whole-brain k and f maps with scan time of <30 min and isotropic spatial resolution of 1.4 mm. The technical principle of the method is based on four-point fit of a matrix model of pulsed MT to imaging data obtained with variable offset frequency saturation while using a complimentary R1 (=1 / T1) map. Anatomical correlations of in vivo cross-relaxation parametric maps were evaluated in three healthy subjects. The f maps revealed correspondence of areas with highly elevated f = 12-15% to major fiber tracts such as corpus callosum, anterior commissure, optic radiations, and major brain fasciculi. The rest of white matter (WM) demonstrated lower f = 9-11%, resulting in clear visual contrast of fiber tracts. Even lower f = 6.5-8.5% were found in gray matter (GM) with the highest f = 8.5% in the anterior thalamus. Distribution of k was relatively uniform in WM and produced sharp contrast between GM and WM (k = 1.6 and 3.3 s(-1), respectively). The most marked feature of k maps was their ability to visualize the corticospinal tract, which had elevated k = 3.4-3.8 s(-1) but appeared invisible on f maps. The observed patterns on f maps can be explained by variations in the density of myelinated fibers, while the trends of k may reflect regional differences in axonal organization. Cross-relaxation imaging can be used in various clinical studies focused on brain development and white matter diseases.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.