• Skin Res Technol · May 2020

    Ros-NET: A deep convolutional neural network for automatic identification of rosacea lesions.

    • Hamidullah Binol, Alisha Plotner, Jennifer Sopkovich, Benjamin Kaffenberger, Muhammad Khalid Khan Niazi, and Metin N Gurcan.
    • Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, NC, USA.
    • Skin Res Technol. 2020 May 1; 26 (3): 413-421.

    BackgroundRosacea is one of the most common cutaneous disorder characterized primarily by facial flushing, erythema, papules, pustules, telangiectases, and nasal swelling. Diagnosis of rosacea is principally done by a physical examination and a consistent patient history. However, qualitative human assessment is often subjective and suffers from a relatively high intra- and inter-observer variability in evaluating patient outcomes.Materials And MethodsTo overcome these problems, we propose a quantitative and reproducible computer-aided diagnosis system, Ros-NET, which integrates information from different image scales and resolutions in order to identify rosacea lesions. This involves adaption of Inception-ResNet-v2 and ResNet-101 to extract rosacea features from facial images. Additionally, we propose to refine the detection results by means of facial-landmarks-based zones (ie, anthropometric landmarks) as regions of interest (ROI), which focus on typical areas of rosacea occurrence on a face.ResultsUsing a leave-one-patient-out cross-validation scheme, the weighted average Dice coefficients, in percentages, across all patients (N = 41) with 256 × 256 image patches are 89.8 ± 2.6% and 87.8 ± 2.4% with Inception-ResNet-v2 and ResNet-101, respectively.ConclusionThe findings from this study support that pre-trained networks trained via transfer learning can be beneficial in identifying rosacea lesions. Our future work will involve expanding the work to a larger database of cases with varying degrees of disease characteristics.© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.