• Neuroscience · Aug 2021

    Review

    Neural Mechanism of Blindsight in a Macaque Model.

    • Tadashi Isa and Masatoshi Yoshida.
    • Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
    • Neuroscience. 2021 Aug 10; 469: 138-161.

    AbstractSome patients with damage to the primary visual cortex (V1) exhibit visuomotor ability, despite loss of visual awareness, a phenomenon termed "blindsight". We review a series of studies conducted mainly in our laboratory on macaque monkeys with unilateral V1 lesioning to reveal the neural pathways underlying visuomotor transformation and the cognitive capabilities retained in blindsight. After lesioning, it takes several weeks for the recovery of visually guided saccades toward the lesion-affected visual field. In addition to the lateral geniculate nucleus, the pathway from the superior colliculus to the pulvinar participates in visuomotor processing in blindsight. At the cortical level, bilateral lateral intraparietal regions become critically involved in the saccade control. These results suggest that the visual circuits experience drastic changes while the monkey acquires blindsight. In these animals, analysis based on signal detection theory adapted to behavior in the "Yes-No" task indicates reduced sensitivity to visual targets, suggesting that visual awareness is impaired. Saccades become less accurate, decisions become less deliberate, and some forms of bottom-up attention are impaired. However, a variety of cognitive functions are retained such as saliency detection during free viewing, top-down attention, short-term spatial memory, and associative learning. These observations indicate that blindsight is not a low-level sensory-motor response, but the residual visual inputs can access these cognitive capabilities. Based on these results we suggest that the macaque model of blindsight replicates type II blindsight patients who experience some "feeling" of objects, which guides cognitive capabilities that we naïvely think are not possible without phenomenal consciousness.Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.