• Magn Reson Med · Nov 2019

    Probing chemical exchange using quantitative spin-lock R1ρ asymmetry imaging with adiabatic RF pulses.

    • Baiyan Jiang, Tao Jin, Thierry Blu, and Weitian Chen.
    • Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, The Republic of China.
    • Magn Reson Med. 2019 Nov 1; 82 (5): 1767-1781.

    PurposeCEST is commonly used to probe the effects of chemical exchange. Although R1ρ asymmetry quantification has also been described as a promising option for detecting the effects of chemical exchanges, the existing acquisition approaches are highly susceptible to B1 RF and B0 field inhomogeneities. To address this problem, we report a new R1ρ asymmetry imaging approach, AC-iTIP, which is based on the previously reported techniques of irradiation with toggling inversion preparation (iTIP) and adiabatic continuous wave constant amplitude spin-lock RF pulses (ACCSL). We also derived the optimal spin-lock RF pulse B1 amplitude that yielded the greatest R1ρ asymmetry.MethodsBloch-McConnell simulations were used to verify the analytical formula derived for the optimal spin-lock RF pulse B1 amplitude. The performance of the AC-iTIP approach was compared to that of the iTIP approach based on hard RF pulses and the R1ρ -spectrum acquired using adiabatic RF pulses with the conventional fitting method. Comparisons were performed using Bloch-McConnell simulations, phantom, and in vivo experiments at 3.0T.ResultsThe analytical prediction of the optimal B1 was validated. Compared to the other 2 approaches, the AC-iTIP approach was more robust under the influences of B1 RF and B0 field inhomogeneities. A linear relationship was observed between the measured R1ρ asymmetry and the metabolite concentration.ConclusionThe AC-iTIP approach could probe the chemical exchange effect more robustly than the existing R1ρ asymmetry acquisition approaches. Therefore, AC-iTIP is a promising technique for metabolite imaging based on the chemical exchange effect.© 2019 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.