-
Comparative Study Clinical Trial
Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs.
- Christopher Barton, Uli Chettipally, Yifan Zhou, Zirui Jiang, Anna Lynn-Palevsky, Sidney Le, Jacob Calvert, and Ritankar Das.
- Department of Emergency Medicine, University of California San Francisco, San Francisco, CA, USA.
- Comput. Biol. Med. 2019 Jun 1; 109: 79-84.
ObjectiveSepsis remains a costly and prevalent syndrome in hospitals; however, machine learning systems can increase timely sepsis detection using electronic health records. This study validates a gradient boosted ensemble machine learning tool for sepsis detection and prediction, and compares its performance to existing methods.Materials And MethodsRetrospective data was drawn from databases at the University of California, San Francisco (UCSF) Medical Center and the Beth Israel Deaconess Medical Center (BIDMC). Adult patient encounters without sepsis on admission, and with at least one recording of each of six vital signs (SpO2, heart rate, respiratory rate, temperature, systolic and diastolic blood pressure) were included. We compared the performance of the machine learning algorithm (MLA) to that of commonly used scoring systems. Area under the receiver operating characteristic (AUROC) curve was our primary measure of accuracy. MLA performance was measured at sepsis onset, and at 24 and 48 h prior to sepsis onset.ResultsThe MLA achieved an AUROC of 0.88, 0.84, and 0.83 for sepsis onset and 24 and 48 h prior to onset, respectively. These values were superior to those of SIRS (0.66), MEWS (0.61), SOFA (0.72), and qSOFA (0.60) at time of onset. When trained on UCSF data and tested on BIDMC data, sepsis onset AUROC was 0.89.Discussion And ConclusionThe MLA predicts sepsis up to 48 h in advance and identifies sepsis onset more accurately than commonly used tools, maintaining high performance for sepsis detection when trained and tested on separate datasets.Copyright © 2019 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.