Computers in biology and medicine
-
During the coronavirus disease (COVID-19) pandemic, different technologies, including telehealth, are maximised to mitigate the risks and consequences of the disease. Telehealth has been widely utilised because of its usability and safety in providing healthcare services during the COVID-19 pandemic. However, a systematic literature review which provides extensive evidence on the impact of COVID-19 through telehealth and which covers multiple directions in a large-scale research remains lacking. ⋯ Regardless of category, the articles focused on the challenges which hinder the maximisation of telehealth in such times and how to address them. With the rapid increase in the utilization of telehealth in different specialised hospitals and clinics, a potential framework which reflects the authors' implications of the future application and opportunities of telehealth has been established. This article improves our understanding and reveals the full potential of telehealth during these difficult times and beyond.
-
Nowadays, digital pathology plays a major role in the diagnosis and prognosis of tumours. Unfortunately, existing methods remain limited when faced with the high resolution and size of Whole Slide Images (WSIs) coupled with the lack of richly annotated datasets. Regarding the ability of the Deep Learning (DL) methods to cope with the large scale applications, such models seem like an appealing solution for tissue classification and segmentation in histopathological images. ⋯ Besides, we test our training strategy and models on the CRC-5000, nct-crc-he-100k and Warwick datasets. Respective accuracy rates of 98.66%, 99.12% and 78.39% were achieved by SegNet. Finally, we analyze the existing models to discover the most suitable network and the most effective training strategy for our colon tumour segmentation case study.1.
-
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused worldwide pandemic and is responsible for millions of worldwide deaths due to -a respiratory disease known as COVID-19. In the search for a cure of COVID-19, drug repurposing is a fast and cost-effective approach to identify anti-COVID-19 drugs from existing drugs. The receptor binding domain (RBD) of the SARS-CoV-2 spike protein has been a main target for drug designs to block spike protein binding to ACE2 proteins. ⋯ The binding stability of the 18 drugs were further investigated using MD simulations. Encouragingly, 6 drugs exhibited stable binding with RBD at the ACE2-RBD interface and 3 of them (gonadorelin, fondaparinux and atorvastatin) showed significantly enhanced binding after the MD simulations. Our study shows that flexibility modeling of SARS-CoV-2 RBD using MD simulation is of great help in identifying novel agents which might block the interaction between human ACE2 and the SARS-CoV-2 RBD for inhibiting the virus infection.
-
The volume of daily patient arrivals at Emergency Departments (EDs) is unpredictable and is a significant reason of ED crowding in hospitals worldwide. Timely forecast of patients arriving at ED can help the hospital management in early planning and avoiding of overcrowding. Many different ED patient arrivals forecasting models have previously been proposed by using time series analysis methods. ⋯ Among the three models, CNN outperformed for short-term (3 days in advance) patient arrivals prediction with Mean Absolute Percentage Error (MAPE) of 9.24% and LSTM performed better for moderate-term (7 days in advance) patient arrivals prediction with MAPE of 8.91% using weather forecast information. Whereas, LSTM model outperformed with MAPE of 8.04% compared to 9.53% by CNN and 10.10% by RF model for current day prediction of patient arrivals using 3 days past weather information. Thus, for short-term ED patient arrivals forecasting, DNN-based model performed better compared to RF regressor ML-based model.
-
COVID-19 was declared a pandemic by the World Health Organisation (WHO) on March 11th, 2020. With half of the world's countries in lockdown as of April due to this pandemic, monitoring and understanding the spread of the virus and infection rates and how these factors relate to behavioural and societal parameters is crucial for developing control strategies. ⋯ Our findings from an agent-based simulation modelling showed that whilst requiring a lockdown is widely believed to be the most efficient method to quickly reduce infection numbers, the practice of social distancing and the usage of surgical masks can potentially be more effective than requiring a lockdown. Our multivariate analysis of simulation results using the Morris Elementary Effects Method suggests that if a sufficient proportion of the population uses surgical masks and follows social distancing regulations, then SARS-CoV-2 infections can be controlled without requiring a lockdown.