• Comput. Biol. Med. · Aug 2021

    Performance evaluation of Emergency Department patient arrivals forecasting models by including meteorological and calendar information: A comparative study.

    • Vidya K Sudarshan, Mikkel Brabrand, Troels Martin Range, and Uffe Kock Wiil.
    • Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Denmark; Biomedical Engineering, School of Science and Technology, SUSS, Singapore; College of Engineering, Science and Environment, University of Newcastle, Singapore. Electronic address: vidya001@suss.edu.sg.
    • Comput. Biol. Med. 2021 Aug 1; 135: 104541.

    AbstractThe volume of daily patient arrivals at Emergency Departments (EDs) is unpredictable and is a significant reason of ED crowding in hospitals worldwide. Timely forecast of patients arriving at ED can help the hospital management in early planning and avoiding of overcrowding. Many different ED patient arrivals forecasting models have previously been proposed by using time series analysis methods. Even though the time series methods such as Linear and Logistic Regression, Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), Exponential Smoothing (ES), and Artificial Neural Network (ANN) have been explored extensively for the ED forecasting model development, the few significant limitations of these methods associated in the analysis of time series data make the models inadequate in many practical situations. Therefore, in this paper, Machine Learning (ML)-based Random Forest (RF) regressor, and Deep Neural Network (DNN)-based Long Short-Term Memory (LSTM) and Convolutional Neural network (CNN) methods, which have not been explored to the same extent as the other time series techniques, are implemented by incorporating meteorological and calendar parameters for the development of forecasting models. The performances of the developed three models in forecasting ED patient arrivals are evaluated. Among the three models, CNN outperformed for short-term (3 days in advance) patient arrivals prediction with Mean Absolute Percentage Error (MAPE) of 9.24% and LSTM performed better for moderate-term (7 days in advance) patient arrivals prediction with MAPE of 8.91% using weather forecast information. Whereas, LSTM model outperformed with MAPE of 8.04% compared to 9.53% by CNN and 10.10% by RF model for current day prediction of patient arrivals using 3 days past weather information. Thus, for short-term ED patient arrivals forecasting, DNN-based model performed better compared to RF regressor ML-based model.Copyright © 2021 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…