• Medical care · Jun 2010

    Bayesian meta-analyses for comparative effectiveness and informing coverage decisions.

    • Scott M Berry, K Jack Ishak, Bryan R Luce, and Donald A Berry.
    • Berry Consultants, College Station, TX 77845, USA. scott@berryconsultants.com
    • Med Care. 2010 Jun 1;48(6 Suppl):S137-44.

    BackgroundEvidence-based medicine is increasingly expected in health care decision-making. The Centers for Medicare and Medicaid have initiated efforts to understand the applicability of Bayesian techniques for synthesizing evidence. As a case study, a Bayesian analysis of clinical trials of implantable cardioverter defibrillators was undertaken using patient-level data not typically available for analysis.PurposeConduct Bayesian meta-analyses of the defibrillator trials using published results to demonstrate a Bayesian approach useful to policy makers. DATA SOURCES, STUDY SELECTION, DATA EXTRACTION: We reconsidered trials in a 2007 systematic review by Ezekowitz et al (Ann Intern Med. 2007;147:251-262) and extracted information from the original published articles. Employing a Bayesian hierarchical approach, we developed a base model and 2 variants, and modeled hazard ratios separately within each year of follow-up. We considered sequential meta-analyses over time and found the predictive distribution of the results of the next trial, given its sample size.Data SynthesisFor the most robust of 3 models, the probability that the mean defibrillator effect (in the population of trials) is beneficial is greater than 0.999. In that model, about 5% of trials in the population of trials would have a detrimental effect. Despite the moderate amount of heterogeneity across the trials, there was stability of conclusions after the first 3 of the 12 total trials had been conducted. This stability enabled reasonable predictions for the results of future trials.LimitationsInability to assess treatment effects within subsets of patients.ConclusionsBayesian meta-analyses based on literature surveys can effectively inform coverage decisions. Bayesian modeling for endpoints such as mortality can elucidate treatment effects over time. The Bayesian approach used in a sequential manner over time can predict results and help assess the utility of future clinical trials.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.