• J Magn Reson Imaging · Nov 2016

    Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy.

    • Jia Wu, Guanghua Gong, Yi Cui, and Ruijiang Li.
    • Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA.
    • J Magn Reson Imaging. 2016 Nov 1; 44 (5): 1107-1115.

    PurposeTo predict pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multiregion analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI).Materials And MethodsIn this Institutional Review Board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using 3T DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with high temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC.ResultsThree tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast washout were statistically significant (P < 0.05) after correcting for multiple testing, with area under the receiver operating characteristic (ROC) curve (AUC) or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (P = 0.002) in leave-one-out cross-validation. This improved upon conventional imaging predictors such as tumor volume (AUC = 0.53) and texture features based on whole-tumor analysis (AUC = 0.65).ConclusionThe heterogeneity of the tumor subregion associated with fast washout on DCE-MRI predicted pathological response to NAC in breast cancer. J. Magn. Reson. Imaging 2016;44:1107-1115.© 2016 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.