-
- Felipe A Medeiros, Alessandro A Jammal, and Atalie C Thompson.
- Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina. Electronic address: felipe.medeiros@duke.edu.
- Ophthalmology. 2019 Apr 1; 126 (4): 513-521.
PurposePrevious approaches using deep learning (DL) algorithms to classify glaucomatous damage on fundus photographs have been limited by the requirement for human labeling of a reference training set. We propose a new approach using quantitative spectral-domain (SD) OCT data to train a DL algorithm to quantify glaucomatous structural damage on optic disc photographs.DesignCross-sectional study.ParticipantsA total of 32 820 pairs of optic disc photographs and SD OCT retinal nerve fiber layer (RNFL) scans from 2312 eyes of 1198 participants.MethodsThe sample was divided randomly into validation plus training (80%) and test (20%) sets, with randomization performed at the patient level. A DL convolutional neural network was trained to assess optic disc photographs and predict SD OCT average RNFL thickness.Main Outcome MeasuresThe DL algorithm performance was evaluated in the test sample by evaluating correlation and agreement between the predictions and actual SD OCT measurements. We also assessed the ability to discriminate eyes with glaucomatous visual field loss from healthy eyes with area under the receiver operating characteristic (ROC) curves.ResultsThe mean prediction of average RNFL thickness from all 6292 optic disc photographs in the test set was 83.3±14.5 μm, whereas the mean average RNFL thickness from all corresponding SD OCT scans was 82.5±16.8 μm (P = 0.164). There was a very strong correlation between predicted and observed RNFL thickness values (Pearson r = 0.832; R2 = 69.3%; P < 0.001), with mean absolute error of the predictions of 7.39 μm. The area under the ROC curves for discriminating glaucomatous from healthy eyes with the DL predictions and actual SD OCT average RNFL thickness measurements were 0.944 (95% confidence interval [CI], 0.912-0.966) and 0.940 (95% CI, 0.902-0.966), respectively (P = 0.724).ConclusionsWe introduced a novel DL approach to assess fundus photographs and provide quantitative information about the amount of neural damage that can be used to diagnose and stage glaucoma. In addition, training neural networks to predict SD OCT data objectively represents a new approach that overcomes limitations of human labeling and could be useful in other areas of ophthalmology.Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.