Ophthalmology
-
Previous approaches using deep learning (DL) algorithms to classify glaucomatous damage on fundus photographs have been limited by the requirement for human labeling of a reference training set. We propose a new approach using quantitative spectral-domain (SD) OCT data to train a DL algorithm to quantify glaucomatous structural damage on optic disc photographs. ⋯ We introduced a novel DL approach to assess fundus photographs and provide quantitative information about the amount of neural damage that can be used to diagnose and stage glaucoma. In addition, training neural networks to predict SD OCT data objectively represents a new approach that overcomes limitations of human labeling and could be useful in other areas of ophthalmology.