• J. Neurophysiol. · Aug 1997

    Comparative Study

    Spinal strychnine alters response properties of nociceptive-specific neurons in rat medial thalamus.

    • S E Sherman, L Luo, and J O Dostrovsky.
    • Department of Physiology, University of Toronto, Ontario, Canada.
    • J. Neurophysiol. 1997 Aug 1; 78 (2): 628-37.

    AbstractExperiments in both conscious and anesthetized animals indicate that intrathecal (i.t.) strychnine (STR; glycine receptor antagonist) produces acute, reversible allodynia, as evidenced by inappropriate behavioral and autonomic responses to cutaneous tactile stimuli. Although STR is known to produce disinhibition of afferent input to the spinal cord, changes in spinal reflexes cannot fully explain the complex behaviors observed following i.t. STR. Which supraspinal sites are involved in STR-dependent allodynia and how this abnormal somatosensory message is relayed to these sites remain to be determined. The medial thalamus contains many nociceptive-specific (NS) neurons and is believed to be involved in mediating the affective-motivational aspects of pain. It is thus important to determine whether spinally administered STR elicits changes in the responses of medial thalamic NS neurons. Extracellular single-unit recordings were conducted in urethan-anesthetized rats (290-490 g). A detailed characterization of 20 thalamic NS units (1 per rat; 2 in 1 case) was conducted before and immediately after i.t. STR (40 microg). Initially, all of the units in this study were classified as NS, because they were excited by noxious pinch but not by innocuous tactile stimuli. After i.t. STR, all (formerly NS) units exhibited significant responses to innocuous tactile stimuli (brush and/or air jet) applied to lumbar or sacral dermatomes. This effect of STR on thalamic NS neurons was acute and reversible. The majority of units (11 of 20) also exhibited an increase in spontaneous firing rate. Although the complete pinch receptive field (RF) could not be determined for all units, the available data indicate that the RFs for brush stimulation after i.t. STR were substantially different from the pre-STR pinch RFs for all but three units. The same i.t. STR injection that caused the observed changes in medial thalamus also produced allodynia, in the form of brush-evoked cardiovascular or motor responses, in 18 of the 19 rats. The ability of NS cells in medial thalamus to respond to tactile input after i.t. STR suggests that the STR lowers the threshold of nociceptive neurons that project directly and/or indirectly to medial thalamus. These observations suggest that ascending nociceptive pathways and medial thalamic structures contribute to the expression of STR-dependent allodynia.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.