• J Biomech Eng · Nov 1995

    Energy comparison between trot, bound, and gallop using a simple model.

    • P Nanua and K J Waldron.
    • Power Systems Research Dept., General Motors R&D Center, Warren, Ml 48090, USA.
    • J Biomech Eng. 1995 Nov 1; 117 (4): 466-73.

    AbstractIn this paper, the dynamics of quadruped trot, gallop, and bound will be examined using a simple model for the quadruped. The body of the quadruped is modeled as a uniform bar and the legs are modeled by massless springs. It will be shown that symmetry can be used to study the locomotion of this system. Using symmetry, a technique will be developed to obtain periodic solutions for each of the gaits of the quadruped model. These periodic solutions will be computed at various speeds. The energy levels will be compared for each of the gaits. The exchange of energy between its different forms will be shown for different gaits. It will be shown that even without body flexibility, there are significant savings in energy due to gait transition from trot to gallop. The energy levels will be used to predict the trot-gallop transition speed. These results will be compared with the experimental results for horses and dogs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…