• NeuroImage · Jul 2013

    A tissue-relaxation-dependent neighboring method for robust mapping of the myelin water fraction.

    • Oh In Kwon, Eung Je Woo, Yiping P Du, and Dosik Hwang.
    • Department of Mathematics, Konkuk University, Republic of Korea.
    • Neuroimage. 2013 Jul 1; 74: 12-21.

    AbstractQuantitative assessment of the myelin content in white matter (WM) using MRI has become a useful tool for investigating myelin-related diseases, such as multiple sclerosis (MS). Myelin water fraction (MWF) maps can be estimated pixel-by-pixel by a determination of the T₂ or T₂* spectrum from signal decay measurements at each individual image pixel. However, detection of parameters from the measured decay curve, assuming a combination of smooth multi-exponential curves, results in a nonlinear and seriously ill-posed problem. In this paper, we propose a new method to obtain a stable MWF map robust to the presence of noise while sustaining sufficient resolution, which uses weighted combinations of measured decay signals in a spatially independent neighborhood to combine tissues with similar relaxation parameters. To determine optimal weighting factors, we define a spatially independent neighborhood for each pixel and a distance with respect to decay rates that effectively includes pixels with similar decay characteristics, and which therefore have similar relaxation parameters. We recover the MWF values by using optimally weighted decay curves. We use numerical simulations and in vitro and in vivo experimental brain data scanned with a multi-gradient-echo sequence to demonstrate the feasibility of our proposed algorithm and to highlight its advantages compared to the conventional method.Copyright © 2013 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…