-
Brain research bulletin · Jun 2018
Hydroxysafflor yellow a protects brain microvascular endothelial cells against oxygen glucose deprivation/reoxygenation injury: Involvement of inhibiting autophagy via class I PI3K/Akt/mTOR signaling pathway.
- Guang Yang, Ning Wang, Sai Wang Seto, Dennis Chang, and Huangzheng Liang.
- Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China. Electronic address: yghefei@163.com.
- Brain Res. Bull. 2018 Jun 1; 140: 243-257.
AbstractThe present study aimed to test whether Hydroxysafflor yellow A (HSYA) protects the brain microvascular endothelial cells (BMECs) injury induced by oxygen glucose deprivation/reoxygenation (OGD/R) via the PI3K/Akt/mTOR autophagy signaling pathway. Primary rat BMECs were cultured and identified by the expression of factor VIII-related antigen before being exposed to OGD/R to imitate ischemia/reperfusion (I/R) damage in vitro. The protective effect of HSYA was evaluated by assessing (1) cellular morphologic and ultrastructural changes; (2) cell viability and cytotoxicity; (3) transendothelial electrical resistance (TEER) of monolayer BMECs; (4) cell apoptosis; (5) fluorescence intensity of LC3B; (6) LC3 mRNA expression; (7) protein expressions of LC3, Beclin-1, Zonula occludens-1 (ZO-1), phospho-Akt (p-Akt), Akt, phospho-mTOR (p-mTOR) and mTOR. It was found that HSYA (20, 40, and 80 μM) and 3-MA effectively reversed the cellular morphological and ultrastructural changes, increased cell survival, normalized the permeability of BMECs, and suppressed apoptosis induced by OGD/R (2 h OGD followed by 24 h reoxygenation). Concurrently, HSYA and 3-MA also inhibited OGD/R-induced autophagy evidenced by the decreased number of autophagosomes and down-regulated levels of LC3 and Beclin-1 proteins and mRNAs. HSYA (80 μM), in combination with 3-MA showed a synergistic effect. Mechanistic studies revealed that HSYA (80 μM) markedly increased the levels of p-Akt and p-mTOR proteins. Blockade of PI3K activity by ZSTK474 abolished its anti-autophagic and pro-survival effect and lowered both Akt and mTOR phosphorylation levels. Taken together, these results suggest that HSYA protects BMECs against OGD/R-induced injury by inhibiting autophagy via the Class I PI3K/Akt/mTOR signaling pathway.Copyright © 2018 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.