• NeuroImage · Feb 2016

    Improved determination of the myelin water fraction in human brain using magnetic resonance imaging through Bayesian analysis of mcDESPOT.

    • Mustapha Bouhrara and Richard G Spencer.
    • Magnetic Resonance Imaging and Spectroscopy Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA. Electronic address: bouhraram@mail.nih.gov.
    • Neuroimage. 2016 Feb 15; 127: 456-471.

    AbstractMyelin water fraction (MWF) mapping with magnetic resonance imaging has led to the ability to directly observe myelination and demyelination in both the developing brain and in disease. Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has been proposed as a rapid approach for multicomponent relaxometry and has been applied to map MWF in the human brain. However, even for the simplest two-pool signal model consisting of myelin-associated and non-myelin-associated water, the dimensionality of the parameter space for obtaining MWF estimates remains high. This renders parameter estimation difficult, especially at low-to-moderate signal-to-noise ratios (SNRs), due to the presence of local minima and the flatness of the fit residual energy surface used for parameter determination using conventional nonlinear least squares (NLLS)-based algorithms. In this study, we introduce three Bayesian approaches for analysis of the mcDESPOT signal model to determine MWF. Given the high-dimensional nature of the mcDESPOT signal model, and, therefore the high-dimensional marginalizations over nuisance parameters needed to derive the posterior probability distribution of the MWF, the Bayesian analyses introduced here use different approaches to reduce the dimensionality of the parameter space. The first approach uses normalization by average signal amplitude, and assumes that noise can be accurately estimated from signal-free regions of the image. The second approach likewise uses average amplitude normalization, but incorporates a full treatment of noise as an unknown variable through marginalization. The third approach does not use amplitude normalization and incorporates marginalization over both noise and signal amplitude. Through extensive Monte Carlo numerical simulations and analysis of in vivo human brain datasets exhibiting a range of SNR and spatial resolution, we demonstrated markedly improved accuracy and precision in the estimation of MWF using these Bayesian methods as compared to the stochastic region contraction (SRC) implementation of NLLS. Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…