• Brain and behavior · Aug 2020

    bFGF promotes neurological recovery from neonatal hypoxic-ischemic encephalopathy by IL-1β signaling pathway-mediated axon regeneration.

    • Zheng Ma, Fang Wang, Lu-Lu Xue, Ying-Jie Niu, Yue Hu, Zhang-Yu Su, Jin Huang, Rui-Ze Niu, Ting-Hua Wang, Ying-Chun Ba, Liu-Lin Xiong, and Xue Bai.
    • Department of Anatomy, Kunming Medical University, Kunming, China.
    • Brain Behav. 2020 Aug 1; 10 (8): e01696.

    IntroductionNeonatal hypoxia-ischemic brain damage (HIBD) can lead to serious neuron damage and dysfunction, causing a significant worldwide health problem. bFGF as a protective reagent promotes neuron repair under hypoxia/ischemia (HI). However, how bFGF and downstream molecules were regulated in HI remains elusive.MethodsWe established an in vitro HI model by culturing primary cortical neurons and treated with oxygen-glucose deprivation (OGD). We suppressed the expression of bFGF by using siRNA (small interfering RNA) interference to detect the neuronal morphological changes by immunofluorescence staining. To determine the potential mechanisms regulated by bFGF, the change of downstream molecular including IL-1β was examined in bFGF knockdown condition. IL-1β knockout (KO) rats were generated using CRISPR/Cas9-mediated technologies. We used an accepted rat model of HI, to assess the effect of IL-1β deletion on disease outcomes and carried out analysis on the behavior, histological, cellular, and molecular level.ResultsWe identified that OGD can induce endogenous expression of bFGF. Both OGD and knockdown of bFGF resulted in reduction of neuron numbers, enlarged cell body and shortened axon length. We found molecules closely related to bFGF, such as interleukin-1β (IL-1β). IL-1β was up-regulated after bFGF interference under OGD conditions, suggesting complex signaling between bFGF and OGD-mediated pathways. We found HI resulted in up-regulation of IL-1β mRNA in cortex and hippocampus. IL-1β KO rats markedly attenuated the impairment of long-term learning and memory induced by HI. Meanwhile, IL-1β-/- (KO, homozygous) group showed better neurite growth and less apoptosis in OGD model. Furthermore, serine/threonine protein kinase (AKT1) mRNA and protein expression was significantly up-regulated in IL-1β KO rats.ConclusionsWe showed that IL-1β-mediated axon regeneration underlie the mechanism of bFGF for the treatment of HIBD in neonatal rats. Results from this study would provide insights and molecular basis for future therapeutics in treating HIBD.© 2020 The Authors. Brain and Behavior published by Wiley Periodicals LLC.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.