• Int. Immunopharmacol. · Feb 2017

    Divergent regulatory roles of extracellular ATP in the degranulation response of mouse bone marrow-derived mast cells.

    • Kazuki Yoshida, Masaaki Ito, and Isao Matsuoka.
    • Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan.
    • Int. Immunopharmacol. 2017 Feb 1; 43: 99-107.

    AbstractMast cells (MCs) play a critical role in allergic inflammation. Although purinergic signalling is implicated in the regulation of various immune responses, its role in MC function is not fully understood. In this study, we investigated the regulatory role of purinergic signalling in MC degranulation, using mouse bone marrow-derived mast cells (BMMCs). Notably, BMMCs expressed various functional P2 adenosine triphosphate (ATP) receptors, including ionotropic P2X4 and P2X7, involved in the regulation of BMMC degranulation. Thus, P2X7 receptor activation induced a marked degranulation from BMMCs directly. Although P2X4 receptor activation did not independently induce degranulation, it significantly potentiated the degranulation triggered by antigen-induced, high-affinity IgE receptor (FcεRI) stimulation. In addition, ATP synergistically augmented degranulation induced by adenosine A3 receptor activation. Moreover, BMMCs highly expressed ecto-nucleotidase CD39, but not ecto-5'-nucleotidase (CD73), and were therefore unable to directly convert ATP to adenosine. However, in the presence of CD73-expressing cells, ATP-mediated BMMC stimulation caused a marked degranulation in a CD73- and adenosine-dependent manner. These results demonstrate that purinergic signalling plays an important role in MC degranulation through at least three distinct mechanisms: (1) higher ATP concentrations directly induce degranulation via P2X7 receptor activation, (2) lower ATP concentrations augment FcεRI-mediated degranulation via P2X4 receptor activation, and (3) in an ecto-nucleotidase-enrich environment, ATP and the converted product adenosine induce a synergistic degranulation by P1 and P2 receptor co-activation.Copyright © 2016 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.