-
J. Clin. Microbiol. · Oct 2014
Fatal systemic necrotizing infections associated with a novel paramyxovirus, anaconda paramyxovirus, in green anaconda juveniles.
- Patrick C Y Woo, Susanna K P Lau, Paolo Martelli, Suk-Wai Hui, Candy C Y Lau, Rachel Y Y Fan, Joseph M Groff, Emily W T Tam, Kwok-Hung Chan, and Kwok-Yung Yuen.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Department of Microbiology, The University of Hong Kong, Hong Kong Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong pcywoo@hku.hk kyyuen@hkucc.hku.hk.
- J. Clin. Microbiol. 2014 Oct 1; 52 (10): 3614-23.
AbstractBeginning in July 2011, 31 green anaconda (Eunectes murinus) juveniles from an oceanarium in Hong Kong died over a 12-month period. Necropsy revealed at least two of the following features in 23 necropsies: dermatitis, severe pan-nephritis, and/or severe systemic multiorgan necrotizing inflammation. Histopathological examination revealed severe necrotizing inflammation in various organs, most prominently the kidneys. Electron microscopic examination of primary tissues revealed intralesional accumulations of viral nucleocapsids with diameters of 10 to 14 nm, typical of paramyxoviruses. Reverse transcription (RT)-PCR results were positive for paramyxovirus (viral loads of 2.33 × 10(4) to 1.05 × 10(8) copies/mg tissue) in specimens from anaconda juveniles that died but negative in specimens from the two anaconda juveniles and anaconda mother that survived. None of the other snakes in the park was moribund, and RT-PCR results for surveillance samples collected from other snakes were negative. The virus was isolated from BHK21 cells, causing cytopathic effects with syncytial formation. The virus could also replicate in 25 of 27 cell lines of various origins, in line with its capability for infecting various organs. Electron microscopy with cell culture material revealed enveloped virus with the typical "herringbone" appearance of helical nucleocapsids in paramyxoviruses. Complete genome sequencing of five isolates confirmed that the infections originated from the same clone. Comparative genomic and phylogenetic analyses and mRNA editing experiments revealed a novel paramyxovirus in the genus Ferlavirus, named anaconda paramyxovirus, with a typical Ferlavirus genomic organization of 3'-N-U-P/V/I-M-F-HN-L-5'. Epidemiological and genomic analyses suggested that the anaconda juveniles acquired the virus perinatally from the anaconda mother rather than from other reptiles in the park, with subsequent interanaconda juvenile transmission. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.