• J Biomech Eng · Mar 2014

    Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy.

    • Lingyan Shi, Min Zeng, Yi Sun, and Bingmei M Fu.
    • J Biomech Eng. 2014 Mar 1; 136 (3): 031005.

    AbstractDevelopment of an optimal systemic drug delivery strategy to the brain will require noninvasive or minimally invasive methods to quantify the permeability of the cerebral microvessel wall or blood-brain barrier (BBB) to various therapeutic agents and to measure their transport in the brain tissue. To address this problem, we used laser-scanning multiphoton microscopy to determine BBB permeability to solutes (P) and effective solute diffusion coefficients (Deff) in rat brain tissue 100-250 μm below the pia mater. The cerebral microcirculation was observed through a section of frontoparietal bone thinned with a microgrinder. Sodium fluorescein, fluorescein isothiocyanate (FITC)-dextrans, or Alexa Fluor 488-immunoglobulin G (IgG) in 1% bovine serum albumin (BSA) mammalian Ringer's solution was injected into the cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ∼3 ml/min. P and Deff were determined from the rate of tissue solute accumulation and the radial concentration gradient around individual microvessels in the brain tissue. The mean apparent permeability P values for sodium fluorescein (molecular weight (MW) 376 Da), dextran-4k, -20k, -40k, -70k, and IgG (MW ∼160 kDa) were 14.6, 6.2, 1.8, 1.4, 1.3, and 0.54 × 10-7 cm/s, respectively. These P values were not significantly different from those of rat pial microvessels for the same-sized solutes (Yuan et al., 2009, "Non-Invasive Measurement of Solute Permeability in Cerebral Microvessels of the Rat," Microvasc. Res., 77(2), pp. 166-73), except for the small solute sodium fluorescein, suggesting that pial microvessels can be a good model for studying BBB transport of relatively large solutes. The mean Deff values were 33.2, 4.4, 1.3, 0.89, 0.59, and 0.47 × 10-7 cm2/s, respectively, for sodium fluorescein, dextran-4k, -20k, -40k, -70k, and IgG. The corresponding mean ratio of Deff to the free diffusion coefficient Dfree, Deff/Dfree, were 0.46, 0.19, 0.12, 0.12, 0.11, and 0.11 for these solutes. While there is a significant difference in Deff/Dfree between small (e.g., sodium fluorescein) and larger solutes, there is no significant difference in Deff/Dfree between solutes with molecular weights from 20,000 to 160,000 Da, suggesting that the relative resistance of the brain tissue to macromolecular solutes is similar over a wide size range. The quantitative transport parameters measured from this study can be used to develop better strategies for brain drug delivery.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.