• Brain research · Dec 2007

    Reorganization of functional brain maps after exercise training: Importance of cerebellar-thalamic-cortical pathway.

    • D P Holschneider, J Yang, Y Guo, and J-M I Maarek.
    • Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. holschne@usc.edu
    • Brain Res. 2007 Dec 12; 1184: 96-107.

    AbstractExercise training (ET) causes functional and morphologic changes in normal and injured brain. While studies have examined effects of short-term (same day) training on functional brain activation, less work has evaluated effects of long-term training, in particular treadmill running. An improved understanding is relevant as changes in neural reorganization typically require days to weeks, and treadmill training is a component of many neurorehabilitation programs. Adult, male rats (n=10) trained to run for 40 min/day, 5 days/week on a Rotarod treadmill at 11.5 cm/s, while control animals (n=10) walked for 1 min/day at 1.2 cm/s. Six weeks later, [(14)C]-iodoantipyrine was injected intravenously during treadmill walking. Regional cerebral blood flow-related tissue radioactivity was quantified by autoradiography and analyzed in the three-dimensionally reconstructed brain by statistical parametric mapping. Exercised compared to nonexercised rats demonstrated increased influence of the cerebellar-thalamic-cortical (CbTC) circuit, with relative increases in perfusion in deep cerebellar nuclei (medial, interposed, lateral), thalamus (ventrolateral, midline, intralaminar), and paravermis, but with decreases in the vermis. In the basal ganglia-thalamic-cortical circuit, significant decreases were noted in sensorimotor cortex and striatum, with associated increases in the globus pallidus. Additional significant changes were noted in the ventral pallidum, superior colliculus, dentate gyrus (increases), and red nucleus (decreases). Following ET, the new dynamic equilibrium of the brain is characterized by increases in the efficiency of neural processing (sensorimotor cortex, striatum, vermis) and an increased influence of the CbTC circuit. Cerebral regions demonstrating changes in neural activation may point to alternate circuits, which may be mobilized during neurorehabilitation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.