• J Healthc Eng · Jan 2019

    A New Blood Pulsation Simulator Platform Incorporating Cardiovascular Physiology for Evaluating Radial Pulse Waveform.

    • Tae-Heon Yang, Jaeuk U Kim, Young-Min Kim, Jeong-Hoi Koo, and Sam-Yong Woo.
    • Department of Electronic Engineering, Korea National University of Transportation, Chungju-si 27469, Republic of Korea.
    • J Healthc Eng. 2019 Jan 1; 2019: 4938063.

    AbstractTo meet the need for "standard" testing system for wearable blood pressure sensors, this study intends to develop a new radial pulsation simulator that can generate age-dependent reference radial artery pressure waveforms reflecting the physiological characteristics of human cardiovascular system. To closely duplicate a human cardiovascular system, the proposed simulator consists of a left ventricle simulation module, an aorta simulation module, a peripheral resistance simulation module, and a positive/negative pressure control reservoir module. Simulating physiologies of blood pressure, the compliance chamber in the simulator can control arterial stiffness to produce age-dependent pressure waveforms. The augmentation index was used to assess the pressure waveforms generated by the simulator. The test results show that the simulator can generate and control radial pressure waveforms similar to human pulse signals consisting of early systolic pressure, late systolic pressure, and dicrotic notch. Furthermore, the simulator's left ventricular pressure-volume loop results demonstrate that the simulator exhibits mechanical characteristics of the human cardiovascular system. The proposed device can be effectively used as a "standard" radial artery pressure simulator to calibrate the wearable sensor's measurement characteristics and to develop more advanced sensors. The simulator is intended to serve as a platform for the development, performance verification, and calibration of wearable blood pressure sensors. It will contribute to the advancement of the wearable blood pressure sensor technology, which enables real-time monitoring of users' radial artery pressure waveforms and eventually predicting cardiovascular diseases.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.