• Spine · Mar 2022

    Single Impact Injury of Vertebral Endplates Without Structural Disruption, Initiates Disc Degeneration Through Piezo1 Mediated Inflammation and Metabolism Dysfunction.

    • Zhengang Sun, Xinfeng Zheng, Songbo Li, Baozhu Zeng, Jiaming Yang, Zemin Ling, Xizhe Liu, and Fuxin Wei.
    • Department of Spine Surgery, Qingdao West Coast New Area Central Hospital of Binzhou Medical College, Qingdao, China.
    • Spine. 2022 Mar 1; 47 (5): E203E213E203-E213.

    Study DesignIn vitro experimental study.ObjectiveTo establish an axial impact injury model of intervertebral disc (IVD) and to investigate if a single impact injury without endplate structural disruption could initiate intervertebral disc degeneration (IDD), and what is the roles of Piezo1 in this process.Summary Of Background DataAlthough IDD process has been confirmed to be associated with structural failures such as endplate fractures, whether a single impact injury of the endplates without structural disruption could initiate IDD remains controversial. Previous studies reported that Piezo1 mediated inflammation participated in the progression of IDD induced by mechanical stretch; however, the roles of Piezo1 in IVD impact injury remain unknown.MethodsRats spinal segments were randomly assigned into Control, Low, and High Impact groups, which were subjected to pure axial impact loading using a custom-made apparatus, and cultured for 14 days. The degenerative process was investigated by using histomorphology, real-time Polymerase Chain Reaction(PCR), western-blot, immunofluorescence, and energy metabolism of IVD cell. The effects of Piezo1 were investigated by using siRNA transfection, real-time PCR, western-blot, and immunofluorescence.ResultsThe discs in both of the impact groups presented degenerative changes after 14 days, which showed significant up-regulation of Piezo1, NLRP3 inflammasome, the catabolic (MMP-9, MMP-13), and pro-inflammatory gene (IL-1β) expression than that of the control group (P < 0.05), accompanied by significantly increased release of ATP, lactate, nitric oxide (NO), and glucose consumption of IVD cells at first 7 days. Silencing Piezo1 reduced the activation of NLRP3 inflammasome and IL-1β expression in the nucleus pulposus induced by impact injury.ConclusionIt demonstrated that not only fracture of the endplate but also a single impact injury without structural impairment could also initiate IDD, which might be mediated by activation of Piezo1 induced inflammation and abnormal energy metabolism of IVD cells.Level of Evidence: N/A.Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.