• J Trauma Acute Care Surg · Oct 2020

    A statistically rigorous deep neural network approach to predict mortality in trauma patients admitted to the intensive care unit.

    • Fahad Shabbir Ahmed, Liaqat Ali, Bellal A Joseph, Asad Ikram, Raza Ul Mustafa, and Syed Ahmad Chan Bukhari.
    • From the Department of Pathology (F.S.A.), Yale School of Medicine, Yale University, New Haven, Connecticut; School of Information and Communication Engineering (L.A.), University of Electronic Science and Technology of China (UESTC), Chengdu, China; Department of Electrical Engineering (L.A.), University of Science and Technology, Bannu, Pakistan; Division of Trauma, Acute Care, Burn, and Emergency Surgery (B.A.J.), University of Arizona, Tucson, Arizona; Department of Neurology (A.I.), University of New Mexico, Albuquerque, New Mexico; Department of Computer Science (R.-u.-M.), COMSATS University Islamabad, Islamabad, Pakistan; and Division of Computer Science, Mathematics, and Science (Healthcare Informatics) (S.A.C.B.), St. John's University, New York, New York.
    • J Trauma Acute Care Surg. 2020 Oct 1; 89 (4): 736-742.

    BackgroundTrauma patients admitted to critical care are at high risk of mortality because of their injuries. Our aim was to develop a machine learning-based model to predict mortality using Fahad-Liaqat-Ahmad Intensive Machine (FLAIM) framework. We hypothesized machine learning could be applied to critically ill patients and would outperform currently used mortality scores.MethodsThe current Deep-FLAIM model evaluates the statistically significant risk factors and then supply these risk factors to deep neural network to predict mortality in trauma patients admitted to the intensive care unit (ICU). We analyzed adult patients (≥18 years) admitted to the trauma ICU in the publicly available database Medical Information Mart for Intensive Care III version 1.4. The first phase selection of risk factor was done using Cox-regression univariate and multivariate analyses. In the second phase, we applied deep neural network and other traditional machine learning models like Linear Discriminant Analysis, Gaussian Naïve Bayes, Decision Tree Model, and k-nearest neighbor models.ResultsWe identified a total of 3,041 trauma patients admitted to the trauma surgery ICU. We observed that several clinical and laboratory-based variables were statistically significant for both univariate and multivariate analyses while others were not. With most significant being serum anion gap (hazard ratio [HR], 2.46; 95% confidence interval [CI], 1.94-3.11), sodium (HR, 2.11; 95% CI, 1.61-2.77), and chloride (HR, 2.11; 95% CI, 1.69-2.64) abnormalities on laboratories, while clinical variables included the diagnosis of sepsis (HR, 2.03; 95% CI, 1.23-3.37), Quick Sequential Organ Failure Assessment score (HR, 1.52; 95% CI, 1.32-3.76). And Systemic Inflammatory Response Syndrome criteria (HR. 1.41; 95% CI, 1.24-1.26). After we used these clinically significant variables and applied various machine learning models to the data, we found out that our proposed DNN outperformed all the other methods with test set accuracy of 92.25%, sensitivity of 79.13%, and specificity of 94.16%; positive predictive value, 66.42%; negative predictive value, 96.87%; and area under the curve of the receiver-operator curve of 0.91 (1.45-1.29).ConclusionOur novel Deep-FLAIM model outperformed all other machine learning models. The model is easy to implement, user friendly and with high accuracy.Level Of EvidencePrognostic study, level II.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.