• JAMA network open · Aug 2020

    Derivation and Validation of Novel Phenotypes of Multiple Organ Dysfunction Syndrome in Critically Ill Children.

    • L Nelson Sanchez-Pinto, Emily K Stroup, Tricia Pendergrast, Neethi Pinto, and Yuan Luo.
    • Critical Care, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
    • JAMA Netw Open. 2020 Aug 3; 3 (8): e209271.

    ImportanceMultiple organ dysfunction syndrome (MODS) is a dynamic and heterogeneous process associated with high morbidity and mortality in critically ill children.ObjectiveTo determine whether data-driven phenotypes of MODS based on the trajectories of 6 organ dysfunctions have prognostic and therapeutic relevance in critically ill children.Design, Setting, And ParticipantsThis cohort study included 20 827 pediatric intensive care encounters among 14 285 children admitted to 2 large academic pediatric intensive care units (PICUs) between January 2010 and August 2016. Patients were excluded if they were older than 21 years or had undergone cardiac surgery. The 6 subscores of the pediatric Sequential Organ Failure Assessment (pSOFA) score were calculated for the first 3 days, including the subscores for respiratory, cardiovascular, coagulation, hepatic, neurologic, and renal dysfunctions. MODS was defined as a pSOFA subscore of at least 2 in at least 2 organs. Encounters were split in a 80:20 ratio for derivation and validation, respectively. The trajectories of the 6 subscores were used to derive a set of data-driven phenotypes of MODS using subgraph-augmented nonnegative matrix factorization in the derivation set. Data analysis was conducted from March to October 2019.ExposuresThe primary exposure was phenotype membership. In the subset of patients with vasoactive-dependent shock, the interaction between hydrocortisone and phenotype membership and its association with outcomes were examined in a matched cohort.Main Outcomes And MeasuresThe primary outcome was in-hospital mortality. Secondary outcomes included persistent MODS on day 7, and vasoactive-free, ventilator-free, and hospital-free days. Regression analysis was used to adjust for age, severity of illness, immunocompromised status, and study site.ResultsThere were 14 285 patients with 20 827 encounters (median [interquartile range] age 5.2 years [1.5-12.7] years; 11 409 [54.8%; 95% CI, 54.1%-55.5%] male patients). Of these, 5297 encounters (25.4%; 95% CI, 24.8%-26.0%) were with patients who had MODS, of which 5054 (95.4%) met the subgraph count threshold and were included in the analysis. Subgraph augmented nonnegative matrix factorization uncovered 4 data-driven phenotypes of MODS, characterized by a combination of neurologic, respiratory, coagulation, and cardiovascular dysfunction, as follows: phenotype 1, severe, persistent encephalopathy (1019 patients [19.2%]); phenotype 2, moderate, resolving hypoxemia (1828 patients [34.5%]); phenotype 3, severe, persistent hypoxemia and shock (1012 patients [19.1%]); and phenotype 4, moderate, persistent thrombocytopenia and shock (1195 patients [22.6%]). These phenotypes were reproducible in a validation set of encounters, had distinct clinical characteristics, and were independently associated with outcomes. For example, using phenotype 2 as reference, the adjusted hazard ratios (aHRs) for death by 28 days were as follows: phenotype 1, aHR of 3.0 (IQR, 2.1-4.3); phenotype 3, aHR of 2.8 (IQR, 2.0-4.1); and phenotype 4, aHR of 1.8 (IQR, 1.2-2.6). Interaction analysis in a matched cohort of patients with vasoactive-dependent shock revealed that hydrocortisone had differential treatment association with vasoactive-free days across phenotypes. For example, patients in phenotype 3 who received hydrocortisone had more vasoactive-free days than those who did not (23 days vs 18 days; P for interaction < .001), whereas patients in other phenotypes who received hydrocortisone either had no difference or had less vasoactive-free days.Conclusions And RelevanceIn this study, data-driven phenotyping in critically ill children with MODS uncovered 4 distinct and reproducible phenotypes with prognostic relevance and possible therapeutic relevance. Further validation and characterization of these phenotypes is warranted.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…