• J Res Med Sci · Jan 2021

    Gene expression profiling utilizing extremely sensitive CDNA arrays and enrichment-based network study of major bone cancer genes.

    • Qiang Lin, Anum Munir, Sana Masood, Shahid Hussain, Mashal Naeem, and Sahar Fazal.
    • The First Department of Orthopedic Injury, Baoji Hospital of Traditional Chinese Medicine, Jintai District, Baoji City, Shanxi Province, China.
    • J Res Med Sci. 2021 Jan 1; 26: 49.

    BackgroundThe gene interaction network is a set of genes interconnected by functional interactions among the genes. The gene interaction networks are studied to determine pathways and regulatory mechanisms in model organisms. In this research, the enrichment study of bone cancer-causing genes is undertaken to identify several hub genes associated to the development of bone cancer.Materials And MethodsData on bone cancer is obtained from mutated gene samples; highly mutated genes are selected for the enrichment analysis. Due to certain interactions with each other the interaction network model for the hub genes is developed and simulations are produced to determine the levels of expression. For the array analyses, a total of 100 tumor specimens are collected. Cell cultures are prepared, RNA is extracted, cDNA arrays probes are generated, and the expressions analysis of Hub genes is determined.ResultsOut of cDNA array findings, only 7 genes: CDKN2A, AKT1, NRAS, PIK3CA, RB1, BRAF, and TP53 are differentially expressed and shown as significant in the development of bone tumors, approximately 15 pathways have been identified, including pathways for non-small cell lung cancer, prostate cancer, pancreatic cancer, chronic myeloid leukemia, and glioma, consisting of all the identified 7 genes. After clinical validations of tumor samples, the IDH1 and TP53 gene revealed significant number of mutations similar to other genes. Specimens analysis showed that RB1, P53, and NRAS are amplified in brain tumor, while BRAF, CDKN2A, and AKT1 are amplified in sarcoma. Maximum deletion mutations of the PIK3CA gene are observed in leukemia. CDKN2A gene amplifications have been observed in virtually all tumor specimens.ConclusionThis study points to a recognizable evidence of novel superimposed pathways mechanisms strongly linked to cancer.Copyright: © 2021 Journal of Research in Medical Sciences.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…