• Surgery · Sep 2013

    Guanine nucleotide exchange factor-H1 signaling is involved in lipopolysaccharide-induced endothelial barrier dysfunction.

    • Zengding Zhou, Feng Guo, Yi Dou, Jiajun Tang, and Jingning Huan.
    • Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
    • Surgery. 2013 Sep 1; 154 (3): 621-31.

    BackgroundGram-negative bacterial lipopolysaccharide (LPS) leads to the pathologic increase of vascular leakage under septic conditions. However, the mechanisms behind LPS-induced vascular hyperpermeability remain incompletely understood. In this study, we tested hypothesis that guanine nucleotide exchange factor-H1 (GEF-H1) signaling might be a key pathway involved in endothelial cells (ECs) barrier dysfunction.MethodsThe roles of GEF-H1 signaling pathway in LPS-induced ECs barrier dysfunction were accessed by Evans blue dye-labeled albumin (EB-albumin) leak across the human umbilical vein EC (HUVEC) monolayers and Western blot assays. Furthermore, the effect of GEF-H1 signaling on LPS-induced alteration of cytoskeletal proteins and disruption of cell-cell junctions were analyzed by immunofluorescent analysis and Western blot assays, respectively.ResultsWe found that LPS could rapidly activated GEF-H1/RhoA/Rho-associated protein kinase (ROCK) signaling pathway in ECs. The LPS-mediated increase in EB-albumin flux across human HUVECs monolayers could be prevented by GEF-H1 depletion or ROCK inactivation. ECs permeability is controlled by actin filaments and cell-cell contact protein complexes. Actin stress fiber formation and/or cell-cell contact proteins loss cause vascular barrier disruption. Here, GEF-H1 knockdown or ROCK inactivation both not only significantly inhibited LPS-induced actin stress fiber formation, phosphorylation of myosin light chain, and myosin-associated phosphatase type 1, but also suppressed LPS-induced loss of occludin, claudin-1, and vascular endothelial (VE)-cadherin in ECs, which suggested that LPS-induced stress fiber formation and cell-cell junctions disruption were closely associated with GEF-H1/RhoA/ROCK signaling activation.ConclusionOur findings indicate that GEF-H1/RhoA/ROCK pathway in ECs plays an important role in LPS-mediated alteration of cell morphology and disruption of cell-cell junctions, consequently regulate LPS-induced vascular permeability dysfunction.Copyright © 2013 Mosby, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.