-
- Zengding Zhou, Feng Guo, Yi Dou, Jiajun Tang, and Jingning Huan.
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Surgery. 2013 Sep 1; 154 (3): 621-31.
BackgroundGram-negative bacterial lipopolysaccharide (LPS) leads to the pathologic increase of vascular leakage under septic conditions. However, the mechanisms behind LPS-induced vascular hyperpermeability remain incompletely understood. In this study, we tested hypothesis that guanine nucleotide exchange factor-H1 (GEF-H1) signaling might be a key pathway involved in endothelial cells (ECs) barrier dysfunction.MethodsThe roles of GEF-H1 signaling pathway in LPS-induced ECs barrier dysfunction were accessed by Evans blue dye-labeled albumin (EB-albumin) leak across the human umbilical vein EC (HUVEC) monolayers and Western blot assays. Furthermore, the effect of GEF-H1 signaling on LPS-induced alteration of cytoskeletal proteins and disruption of cell-cell junctions were analyzed by immunofluorescent analysis and Western blot assays, respectively.ResultsWe found that LPS could rapidly activated GEF-H1/RhoA/Rho-associated protein kinase (ROCK) signaling pathway in ECs. The LPS-mediated increase in EB-albumin flux across human HUVECs monolayers could be prevented by GEF-H1 depletion or ROCK inactivation. ECs permeability is controlled by actin filaments and cell-cell contact protein complexes. Actin stress fiber formation and/or cell-cell contact proteins loss cause vascular barrier disruption. Here, GEF-H1 knockdown or ROCK inactivation both not only significantly inhibited LPS-induced actin stress fiber formation, phosphorylation of myosin light chain, and myosin-associated phosphatase type 1, but also suppressed LPS-induced loss of occludin, claudin-1, and vascular endothelial (VE)-cadherin in ECs, which suggested that LPS-induced stress fiber formation and cell-cell junctions disruption were closely associated with GEF-H1/RhoA/ROCK signaling activation.ConclusionOur findings indicate that GEF-H1/RhoA/ROCK pathway in ECs plays an important role in LPS-mediated alteration of cell morphology and disruption of cell-cell junctions, consequently regulate LPS-induced vascular permeability dysfunction.Copyright © 2013 Mosby, Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.