• Am. J. Epidemiol. · Nov 2015

    Bounding formulas for selection bias.

    • Tzu-Hsuan Huang and Wen-Chung Lee.
    • Am. J. Epidemiol. 2015 Nov 15; 182 (10): 868-72.

    AbstractResearchers conducting observational studies need to consider 3 types of biases: selection bias, information bias, and confounding bias. A whole arsenal of statistical tools can be used to deal with information and confounding biases. However, methods for addressing selection bias and unmeasured confounding are less developed. In this paper, we propose general bounding formulas for bias, including selection bias and unmeasured confounding. This should help researchers make more prudent interpretations of their (potentially biased) results. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.