-
- Tzu-Hsuan Huang and Wen-Chung Lee.
- Am. J. Epidemiol. 2015 Nov 15; 182 (10): 868-72.
AbstractResearchers conducting observational studies need to consider 3 types of biases: selection bias, information bias, and confounding bias. A whole arsenal of statistical tools can be used to deal with information and confounding biases. However, methods for addressing selection bias and unmeasured confounding are less developed. In this paper, we propose general bounding formulas for bias, including selection bias and unmeasured confounding. This should help researchers make more prudent interpretations of their (potentially biased) results. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.