• NeuroImage · Apr 2016

    Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study.

    • Kilian M Pohl, Edith V Sullivan, Torsten Rohlfing, Weiwei Chu, Dongjin Kwon, NicholsB NolanBNCenter for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States., Yong Zhang, Sandra A Brown, Susan F Tapert, Kevin Cummins, Wesley K Thompson, Ty Brumback, Ian M Colrain, Fiona C Baker, Devin Prouty, Michael D De Bellis, James T Voyvodic, Duncan B Clark, Claudiu Schirda, Bonnie J Nagel, and Adolf Pfefferbaum.
    • Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
    • Neuroimage. 2016 Apr 15; 130: 194-213.

    AbstractNeurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development notable in the boys. The contribution of demographic and clinical differences to DTI metrics was assessed with General Additive Models (GAM) testing for age, sex, and ethnicity differences in regional skeleton mean values. The results supported the primary study hypothesis that FA skeleton mean values in the no/low-drinking group were highest at different ages. When differences in intracranial volume were covaried, FA skeleton mean reached a maximum at younger ages in girls than boys and varied in magnitude with ethnicity. Our results, however, did not support the hypothesis that youth who exceeded exposure criteria would have lower FA or higher diffusivity measures than the no/low-drinking group; detecting the effects of excessive alcohol consumption during adolescence on DTI metrics may require longitudinal study. Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.