• Medicine · Sep 2021

    Impact of different bilateral knee extension strengths on lower extremity performance.

    • Kilchoon Cho, Makoto Suzuki, Naoki Iso, Takuhiro Okabe, Hiroshi Goto, Keisuke Hirata, and Junichi Shimizu.
    • Faculty of Health Sciences, Tokyo Kasei University, Saitama, Japan.
    • Medicine (Baltimore). 2021 Sep 24; 100 (38): e27297e27297.

    AbstractDespite the impact of leg muscle strength on lower extremity motor performance-including walking and sit-to-stand transfer-it remains difficult to predict the relationship between bilateral leg muscle strength and lower extremity performance. Therefore, this study was designed to predict lower extremity function through the differential modeling of logarithmic and linear regression, based on knee extension strength.The study included 121 individuals living in the same community. The bilateral strengths of the knee extensors were measured using a handheld dynamometer, and the Timed Up & Go test (TUG) performance time and 5-m minimum walking times were assessed to predict lower extremity motor functions. Bilateral normalized knee extension muscle strengths and lower extremity motor function scores, including walking or TUG performance times, were assessed on the logarithmic and linear models. The Akaike information criterion (AIC) was used to evaluate the coefficient compatibility between the logarithmic regression model and the linear regression model.The AIC value for the linear model was lower than that for the logarithmic model regarding the walking time. For walking time estimation in the linear model, the coefficient value of knee extension strength was larger on the strong than on the weak side; however, the AIC value for the logarithmic model was lower than that for the linear model regarding TUG performance time. In the logarithmic model's TUG performance time estimation, the coefficient value of knee extension strength was larger on the weak than on the strong side.In conclusion, our study demonstrated different models reflecting the relationship between both legs' strengths and lower extremity performance, including the walking and TUG performance times.Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…