• Neuromodulation · Dec 2022

    Sacral Neuromodulation Changes Pelvic Floor Activity in Overactive Bladder Patients-Possible New Insights in Mechanism of Action: A Pilot Study.

    • Jeroen Voorham, Donald Vaganée, Petra Voorham-van der Zalm, Guus Lycklama À Nijeholt, Hein Putter, and Stefan De Wachter.
    • Department of Urology, Leiden University Medical Center, Leiden, The Netherlands; Department of Urology, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
    • Neuromodulation. 2022 Dec 1; 25 (8): 118011861180-1186.

    ObjectivesTo evaluate if electrodiagnostic tools can advance the understanding in the effect of sacral neuromodulation (SNM) on pelvic floor activity, more specifically if SNM induces changes in pelvic floor muscle (PFM) contraction.Materials And MethodsSingle tertiary center, prospective study (October 2017-May 2018) including patients with overactive bladder syndrome undergoing SNM. Electromyography of the PFM was recorded using the Multiple Array Probe Leiden. The procedure consisted of consecutive stimulations of the lead electrodes with increasing intensity (1-3, 5, 7, 10 V). Recordings were made after electrode placement (T0) and three weeks of SNM (T1). Patients with >50% improvement were defined as responders, others as nonresponders. For the analyses, the highest electrical PFM response (EPFMR), defined as the peak-to-peak amplitude of the muscle response, was identified for each intensity. The sensitivity (intensity where the first EPFMR was registered and the normalized EPFMR as percentage of maximum EPFMR) and the evolution (EMFPR changes over time) were analyzed using linear mixed models.ResultsFourteen patients were analyzed (nine responders, five nonresponders). For nonresponders, the PFM was significantly less sensitive to stimulation after three weeks (T0: 1.7 V, T1: 2.6 V). The normalized EPFMR was (significantly) lower after three weeks for the ipsilateral side of the PFM for the clinically relevant voltages (1 V: 36%-23%; p = 0.024, 2 V: 56%-29%; p = 0.00001; 3 V: 63%-37%; p = 0.0002). For the nonresponders, the mean EPFMR was significantly lower at 8/12 locations at T1 (T0: 109 μV, T1: 58 μV; mean p = 0.013, range <0.0001-0.0867). For responders, the sensitivity and evolution did not change significantly.ConclusionsThis is the first study to describe in detail the neurophysiological characteristics of the PFM, and the changes over time upon sacral spinal root stimulation, in responders and nonresponders to SNM. More research is needed to investigate the full potential of EPFMR as a response indicator.Copyright © 2022. Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…