-
- Sung-Hye You, Seung Hong Choi, Tae Min Kim, Chul-Kee Park, Sung-Hye Park, Jae-Kyung Won, Il Han Kim, Soon Tae Lee, Hye Jeong Choi, Roh-Eul Yoo, Koung Mi Kang, YunTae JinTJFrom the Department of Radiology (S.H.Y., S.H.C., H.J.C., R.E.Y., K.M.K., T.J.Y., J.H.K., C.H.S.), Department of Internal Medicine (T.M.K.), Department of Radiation Oncology (I.H.K.), Cancer Research Institute, Department of Neurosurgery, Biom, Ji-Hoon Kim, and Chul-Ho Sohn.
- From the Department of Radiology (S.H.Y., S.H.C., H.J.C., R.E.Y., K.M.K., T.J.Y., J.H.K., C.H.S.), Department of Internal Medicine (T.M.K.), Department of Radiation Oncology (I.H.K.), Cancer Research Institute, Department of Neurosurgery, Biomedical Research Institute (C.K.P.), Department of Pathology (S.H.P., J.K.W.) and Department of Neurology (S.T.L.), Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744 Seoul, Korea; Center for Nanoparticle Research, Institute for Basic Science (S.H.C.), and School of Chemical and Biological Engineering (S.H.C.), Seoul National University, Seoul, Korea.
- Radiology. 2018 Mar 1; 286 (3): 981-991.
AbstractPurpose To evaluate whether arterial input functions (AIFs) derived from dynamic susceptibility-contrast (DSC) magnetic resonance (MR) imaging, or AIFDSC values, improve diagnostic accuracy and reliability of the pharmacokinetic (PK) parameters of dynamic contrast material-enhanced (DCE) MR imaging for differentiating high-grade from low-grade astrocytomas, compared with AIFs obtained from DCE MR imaging (AIFDCE). Materials and Methods This retrospective study included 226 patients (138 men, 88 women; mean age, 52.27 years ± 15.17; range, 24-84 years) with pathologically confirmed astrocytomas (World Health Organization grade II = 21, III = 53, IV = 152; isocitrate dehydrogenase mutant, 11.95% [27 of 226]; 1p19q codeletion 0% [0 of 226]). All patients underwent both DSC and DCE MR imaging before surgery, and AIFDSC and AIFDCE were obtained from each image. Volume transfer constant (Ktrans), volume of vascular plasma space (vp), and volume of extravascular extracellular space (ve) were processed by using postprocessing software with two AIFs. The diagnostic accuracies of individual parameters were compared by using receiver operating characteristic curve (ROC) analysis. Intraclass correlation coefficients (ICCs) and the Bland-Altman method were used to assess reliability. Results The AIFDSC-driven mean Ktrans and ve were more accurate for differentiating high-grade from low-grade astrocytoma than those derived by using AIFDCE (area under the ROC curve: mean Ktrans, 0.796 vs 0.645, P = .038; mean ve, 0.794 vs 0.658, P = .020). All three parameters had better ICCs with AIFDSC than with AIFDCE (Ktrans, 0.737 vs 0.095; vp, 0.848 vs 0.728; ve, 0.875 vs 0.581, respectively). In AIF analysis, maximal signal intensity (0.837 vs 0.524) and wash-in slope (0.800 vs 0.432) demonstrated better ICCs with AIFDSC than AIFDCE. Conclusion AIFDSC-driven DCE MR imaging PK parameters showed better diagnostic accuracy and reliability for differentiating high-grade from low-grade astrocytoma than those derived from AIFDCE. © RSNA, 2017 Online supplemental material is available for this article.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.