Radiology
-
Randomized Controlled Trial Multicenter Study
Prevalence of Carotid Web in Patients with Acute Intracranial Stroke Due to Intracranial Large Vessel Occlusion.
Purpose To investigate the prevalence of symptomatic carotid web in patients with acute ischemic stroke due to intracranial large vessel occlusion, to determine the clinical and imaging profile of patients with carotid web as well as their association with ischemic stroke, and to determine the interobserver agreement in the assessment of carotid webs. Materials and Methods All patients (n = 500) of the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN) in whom the carotid bifurcation could be assessed (n = 443) were included. The presence of a carotid web at the carotid bifurcations was evaluated at computed tomographic (CT) angiography. ⋯ Fair to good interobserver agreement (κ, 0.72) was observed for diagnosing carotid webs at CT angiography. Conclusion Carotid webs at the symptomatic carotid bifurcation were observed in 2.5% of the patients with acute ischemic stroke due to large vessel occlusion and were mostly diagnosed in female patients with a fair to good interobserver agreement. © RSNA, 2017 Clinical trial registration nos. NTR1804 and ISRCTN10888758 Online supplemental material is available for this article.
-
The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical images. Adoption of an artificial intelligence tool in clinical practice requires careful confirmation of its clinical utility. ⋯ Next, the effects of disease manifestation spectrum and disease prevalence on the performance results are explained, followed by a discussion of the difference between evaluating the performance with use of internal and external datasets, the importance of using an adequate external dataset obtained from a well-defined clinical cohort to avoid overestimating the clinical performance as a result of overfitting in high-dimensional or overparameterized classification model and spectrum bias, and the essentials for achieving a more robust clinical evaluation. Finally, the authors review the role of clinical trials and observational outcome studies for ultimate clinical verification of diagnostic or predictive artificial intelligence tools through patient outcomes, beyond performance metrics, and how to design such studies. © RSNA, 2018.
-
Controlled Clinical Trial
Middle Meningeal Artery Embolization for Chronic Subdural Hematoma.
Purpose To evaluate the effect of middle meningeal artery (MMA) embolization on chronic subdural hematoma (CSDH) and compare the treatment outcomes of MMA embolization and conventional treatment. Materials and Methods All consecutive patients 20 years or older with CSDH were assessed for eligibility. CSDHs with a focal location, a thickness of 10 mm or less, no mass effect, or underlying conditions were excluded. ⋯ Surgical rescue was less frequent in the embolization group (one of 72 patients [1.4%] vs 88 of 469 patients [18.8%]; adjusted OR, 0.094; 95% CI: 0.018, 0.488; P = .005). Treatment-related complication rate was not different between the two groups (0 of 72 patients vs 20 of 469 patients [4.3%]; adjusted OR, 0.145; 95% CI: 0.009, 2.469; P = .182). Conclusion MMA embolization has a positive therapeutic effect on CSDH and is more effective than conventional treatment. © RSNA, 2017.
-
Purpose To evaluate whether arterial input functions (AIFs) derived from dynamic susceptibility-contrast (DSC) magnetic resonance (MR) imaging, or AIFDSC values, improve diagnostic accuracy and reliability of the pharmacokinetic (PK) parameters of dynamic contrast material-enhanced (DCE) MR imaging for differentiating high-grade from low-grade astrocytomas, compared with AIFs obtained from DCE MR imaging (AIFDCE). Materials and Methods This retrospective study included 226 patients (138 men, 88 women; mean age, 52.27 years ± 15.17; range, 24-84 years) with pathologically confirmed astrocytomas (World Health Organization grade II = 21, III = 53, IV = 152; isocitrate dehydrogenase mutant, 11.95% [27 of 226]; 1p19q codeletion 0% [0 of 226]). All patients underwent both DSC and DCE MR imaging before surgery, and AIFDSC and AIFDCE were obtained from each image. ⋯ All three parameters had better ICCs with AIFDSC than with AIFDCE (Ktrans, 0.737 vs 0.095; vp, 0.848 vs 0.728; ve, 0.875 vs 0.581, respectively). In AIF analysis, maximal signal intensity (0.837 vs 0.524) and wash-in slope (0.800 vs 0.432) demonstrated better ICCs with AIFDSC than AIFDCE. Conclusion AIFDSC-driven DCE MR imaging PK parameters showed better diagnostic accuracy and reliability for differentiating high-grade from low-grade astrocytoma than those derived from AIFDCE. © RSNA, 2017 Online supplemental material is available for this article.
-
Purpose To correlate quantitative diffusion-weighted imaging (DWI) parameters derived from conventional monoexponential DWI, stretched exponential DWI, diffusion kurtosis imaging (DKI), and diffusion-tensor imaging (DTI) with quantitative histopathologic tumor tissue composition in prostate cancer in a preliminary hypothesis-generating study. Materials and Methods This retrospective institutional review board-approved study included 24 patients with prostate cancer (mean age, 63 years) who underwent magnetic resonance (MR) imaging, including high-b-value DWI and DTI at 3.0 T, before prostatectomy. The following parameters were calculated in index tumors and nontumoral peripheral zone (PZ): apparent diffusion coefficient (ADC) obtained with monoexponential fit (ADCME), ADC obtained with stretched exponential modeling (ADCSE), anomalous exponent (α) obtained at stretched exponential DWI, ADC obtained with DKI modeling (ADCDKI), kurtosis with DKI, ADC obtained with DTI (ADCDTI), and fractional anisotropy (FA) at DTI. ⋯ These findings should be validated in a larger study. © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on November 10, 2017.