-
Folia medica Cracoviensia · Jan 2011
Increased c-Fos expression in nodose ganglion in rats with electrical vagus nerve stimulation.
- Krzysztof Gil, Andrzej Bugajski, Beata Skowron, and Piotr Thor.
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland. mpgil@cyf-kr.edu.pl
- Folia Med Cracov. 2011 Jan 1; 51 (1-4): 45-58.
BackgroundCentral nervous system receives information from the gut and modifies food intake mainly by vagus nerves. Some our data show that long-term electrical vagus nerve stimulation (VNS), which "mimics" satiety signal from gut, may cause reduction of body mass and decrease in food intake.ObjectiveThe purpose of this study was to assess the effects of chronic vagal stimulation on neurons in the nodose ganglions of vagus nerves, analyzed by c-Fos expression and image analysis.MethodsMale Wistar rats (n = 24) were implanted with microstimulator (MS) and kept during the whole study (3 months) on high calorie diet. Sub-diaphragmatic left vagal nerve was stimulated by electrical rectangular pulses duration 10 ms, amplitude 200 mV, frequency 0.05 Hz generated by MS. Twelve rats (6--control and 6--MS implanted) were used for 3-week and 3-month experiments respectively. At the end of experiments the nodose ganglions of both vagus nerves (left and right) were taken, formalin fixed and paraffin-embedded specimens were made. The nodose ganglions neurons were identified by immunochemistry (PGP 9.5 as a marker) and the percentage of c-Fos positive neurons (anti c-Fos as a marker) were evaluated.ResultsAssessment of c-Fos positive neurons in nodose ganglia of vagal nerve showed significant increase in percentage of positive cells in the left nodose ganglion (4.19%) and non significant in the right nodose ganglion (2.64 %) compared to control (1.44%) in 3-week experiment. Data obtained from 3-month experiment were similar: (4.97%; 2.66% and 1.68%) for left, right and control respectively. In both experiments number of c-Fos positive neurons was higher in left vagal ganglion compared to the right ganglion and control. There were no significant differences between 3-week and 3-month experimental groups.ConclusionsIncrease in c-Fos expression in left nodose ganglion neurons confirms the afferent transmission of the signal (generated by MS) from periphery to the brain by the vagal nerves.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.