• J. Neurophysiol. · Jul 2018

    Neck muscle biomechanics and neural control.

    • Jason B Fice, Gunter P Siegmund, and Jean-Sébastien Blouin.
    • School of Kinesiology, University of British Columbia , Vancouver, British Columbia , Canada.
    • J. Neurophysiol. 2018 Jul 1; 120 (1): 361-371.

    AbstractThe mechanics, morphometry, and geometry of our joints, segments, and muscles are fundamental biomechanical properties intrinsic to human neural control. The goal of our study was to investigate whether the biomechanical actions of individual neck muscles predict their neural control. Specifically, we compared the moment direction and variability produced by electrical stimulation of a neck muscle (biomechanics) to the preferred activation direction and variability (neural control). Subjects sat upright with their head fixed to a six-axis load cell and their torso restrained. Indwelling wire electrodes were placed into the sternocleidomastoid (SCM), splenius capitis (SPL), and semispinalis capitis (SSC) muscles. The electrically stimulated direction was defined as the moment direction produced when a current (2-19 mA) was passed through each muscle's electrodes. Preferred activation direction was defined as the vector sum of the spatial tuning curve built from root mean squared electromyogram when subjects produced isometric moments at 7.5% and 15% of their maximum voluntary contraction (MVC) in 26 three-dimensional directions. The spatial tuning curves at 15% MVC were well defined (unimodal, P < 0.05), and their preferred directions were 23°, 39°, and 21° different from their electrically stimulated directions for the SCM, SPL, and SSC, respectively ( P < 0.05). Intrasubject variability was smaller in electrically stimulated moment directions compared with voluntary preferred directions, and intrasubject variability decreased with increased activation levels. Our findings show that the neural control of neck muscles is not based solely on optimizing individual muscle biomechanics but, as activation increases, biomechanical constraints in part dictate the activation of synergistic neck muscles. NEW & NOTEWORTHY Biomechanics are an intrinsic part of human neural control. In this study, we found that the biomechanics of individual neck muscles cannot fully predict their neural control. Consequently, physiologically based computational neck muscle controllers cannot calculate muscle activation schemes based on the isolated biomechanics of muscles. Furthermore, by measuring biomechanics we showed that the intrasubject variability of the neural control was lower for electrical vs. voluntary activation of the neck muscles.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…