• Comput. Biol. Med. · Jan 2019

    Wheeze type classification using non-dyadic wavelet transform based optimal energy ratio technique.

    • Sezer Ulukaya, Gorkem Serbes, and Yasemin P Kahya.
    • Department of Electrical and Electronics Engineering, Boǧaziçi University, 34342, Istanbul, Turkey; Department of Electrical and Electronics Engineering, Trakya University, 22030, Edirne, Turkey. Electronic address: sezer.ulukaya@boun.edu.tr.
    • Comput. Biol. Med. 2019 Jan 1; 104: 175-182.

    Background And ObjectiveWheezes in pulmonary sounds are anomalies which are often associated with obstructive type of lung diseases. The previous works on wheeze-type classification focused mainly on using fixed time-frequency/scale resolution based on Fourier and wavelet transforms. The main contribution of the proposed method, in which the time-scale resolution can be tuned according to the signal of interest, is to discriminate monophonic and polyphonic wheezes with higher accuracy than previously suggested time and time-frequency/scale based methods.MethodsAn optimal Rational Dilation Wavelet Transform (RADWT) based peak energy ratio (PER) parameter selection method is proposed to discriminate wheeze types. Previously suggested Quartile Frequency Ratios, Mean Crossing Irregularity, Multiple Signal Classification, Mel-frequency Cepstrum and Dyadic Discrete Wavelet Transform approaches are also applied and the superiority of the proposed method is demonstrated in leave-one-out (LOO) and leave-one-subject-out (LOSO) cross validation schemes with support vector machine (SVM), k nearest neighbor (k-NN) and extreme learning machine (ELM) classifiers.ResultsThe results show that the proposed RADWT based method outperforms the state-of-the-art time, frequency, time-frequency and time-scale domain approaches for all classifiers in both LOO and LOSO cross validation settings. The highest accuracy values are obtained as 86% and 82.9% in LOO and LOSO respectively when the proposed PER features are fed into SVM.ConclusionsIt is concluded that time and frequency domain characteristics of wheezes are not steady and hence, tunable time-scale representations are more successful in discriminating polyphonic and monophonic wheezes when compared with conventional fixed resolution representations.Copyright © 2018 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…