• NMR in biomedicine · May 2016

    Comparative Study

    Comparison of image sensitivity between conventional tensor-based and fast diffusion kurtosis imaging protocols in a rodent model of acute ischemic stroke.

    • Yin Wu, Jinsuh Kim, Suk-Tak Chan, Iris Yuwen Zhou, Yingkun Guo, Takahiro Igarashi, Hairong Zheng, Gang Guo, and SunPhillip ZhePZAthinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.Department of Radiology, University of Illinois at Chicago, IL, USA..
    • Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
    • NMR Biomed. 2016 May 1; 29 (5): 625-30.

    AbstractDiffusion kurtosis imaging (DKI) can offer a useful complementary tool to routine diffusion MRI for improved stratification of heterogeneous tissue damage in acute ischemic stroke. However, its relatively long imaging time has hampered its clinical application in the emergency setting. A recently proposed fast DKI approach substantially shortens the imaging time, which may help to overcome the scan time limitation. However, to date, the sensitivity of the fast DKI protocol for the imaging of acute stroke has not been fully described. In this study, we performed routine and fast DKI scans in a rodent model of acute stroke, and compared the sensitivity of diffusivity and kurtosis indices (i.e. axial, radial and mean) in depicting acute ischemic lesions. In addition, we analyzed the contrast-to-noise ratio (CNR) between the ipsilateral ischemic and contralateral normal regions using both conventional and fast DKI methods. We found that the mean kurtosis shows a relative change of 47.1 ± 7.3% between the ischemic and contralateral normal regions, being the most sensitive parameter in revealing acute ischemic injury. The two DKI methods yielded highly correlated diffusivity and kurtosis measures and lesion volumes (R(2)  ⩾ 0.90, p < 0.01). Importantly, the fast DKI method exhibited significantly higher CNR of mean kurtosis (1.6 ± 0.2) compared with the routine tensor protocol (1.3 ± 0.2, p < 0.05), with its CNR per unit time (CNR efficiency) approximately doubled when the scan time was taken into account. In conclusion, the fast DKI method provides excellent sensitivity and efficiency to image acute ischemic tissue damage, which is essential for image-guided and individualized stroke treatment.Copyright © 2016 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.