• Transl Res · Oct 2014

    Review

    Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities.

    • Michele Cavalera, Junhong Wang, and Nikolaos G Frangogiannis.
    • Division of Cardiology, Department of Medicine, The Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York.
    • Transl Res. 2014 Oct 1; 164 (4): 323-35.

    AbstractCardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias, and sudden cardiac death in obese subjects. This review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiological alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis, and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiological alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation, and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes, and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the renin-angiotensin-aldosterone system, induction of transforming growth factor β, oxidative stress, advanced glycation end-products, endothelin 1, Rho-kinase signaling, leptin-mediated actions, and upregulation of matricellular proteins (such as thrombospondin 1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response after cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to the development of novel therapies to prevent heart failure and attenuate postinfarction cardiac remodeling in patients with obesity.Copyright © 2014 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.