• Med Biol Eng Comput · Aug 2017

    EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.

    • Quan Liu, Yi-Feng Chen, Shou-Zen Fan, Maysam F Abbod, and Jiann-Shing Shieh.
    • Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
    • Med Biol Eng Comput. 2017 Aug 1; 55 (8): 1435-1450.

    AbstractElectroencephalography (EEG) has been widely utilized to measure the depth of anaesthesia (DOA) during operation. However, the EEG signals are usually contaminated by artifacts which have a consequence on the measured DOA accuracy. In this study, an effective and useful filtering algorithm based on multivariate empirical mode decomposition and multiscale entropy (MSE) is proposed to measure DOA. Mean entropy of MSE is used as an index to find artifacts-free intrinsic mode functions. The effect of different levels of artifacts on the performances of the proposed filtering is analysed using simulated data. Furthermore, 21 patients' EEG signals are collected and analysed using sample entropy to calculate the complexity for monitoring DOA. The correlation coefficients of entropy and bispectral index (BIS) results show 0.14 ± 0.30 and 0.63 ± 0.09 before and after filtering, respectively. Artificial neural network (ANN) model is used for range mapping in order to correlate the measurements with BIS. The ANN method results show strong correlation coefficient (0.75 ± 0.08). The results in this paper verify that entropy values and BIS have a strong correlation for the purpose of DOA monitoring and the proposed filtering method can effectively filter artifacts from EEG signals. The proposed method performs better than the commonly used wavelet denoising method. This study provides a fully adaptive and automated filter for EEG to measure DOA more accuracy and thus reduce risk related to maintenance of anaesthetic agents.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.