-
Med Biol Eng Comput · Nov 2016
Randomized Controlled TrialNeurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly.
- Javier Gomez-Pilar, Rebeca Corralejo, Luis F Nicolas-Alonso, Daniel Álvarez, and Roberto Hornero.
- Biomedical Engineering Group, E.T.S.I. de Telecomunicación, Universidad de Valladolid, Paseo Belén 15, 47011, Valladolid, Spain. javier.gomez@gib.tel.uva.es.
- Med Biol Eng Comput. 2016 Nov 1; 54 (11): 1655-1666.
AbstractNeurofeedback training (NFT) has shown to be promising and useful to rehabilitate cognitive functions. Recently, brain-computer interfaces (BCIs) were used to restore brain plasticity by inducing brain activity with an NFT. In our study, we hypothesized that an NFT with a motor imagery-based BCI (MI-BCI) could enhance cognitive functions related to aging effects. To assess the effectiveness of our MI-BCI application, 63 subjects (older than 60 years) were recruited. This novel application was used by 31 subjects (NFT group). Their Luria neuropsychological test scores were compared with the remaining 32 subjects, who did not perform NFT (control group). Electroencephalogram changes measured by relative power (RP) endorsed cognitive potential findings under study: visuospatial, oral language, memory, intellectual and attention functions. Three frequency bands were selected to assess cognitive changes: 12, 18, and 21 Hz (bandwidth 3 Hz). Significant increases (p < 0.01) in the RP of these frequency bands were found. Moreover, results from cognitive tests showed significant improvements (p < 0.01) in four cognitive functions after performing five NFT sessions: visuospatial, oral language, memory, and intellectual. This established evidence in the association between NFT performed by a MI-BCI and enhanced cognitive performance. Therefore, it could be a novel approach to help elderly people.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.